Numerical Analysis of the Pivot Node in Fracture Problems

Abstract:

Article Preview

Recent studies have allowed us to identify a narrow region of the thickness of the crack front in fracture problems that presents interesting characteristics for the numerical-experimental correlation. Taking the three-dimensional distribution of the stress intensity factor (K) as a reference, we observe how it remains invariant and independent of the main factors influencing this type of analysis. This article presents a summary of how to identify this point through the numerical simulation of the problem and its relationship with parameters such as thickness, load level or angle of curvature. The simulations are carried out with the ANSYS software in an aluminium CT specimen subjected to a fracture loading process in mode I.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

473-478

Citation:

J. Garcia-Manrique et al., "Numerical Analysis of the Pivot Node in Fracture Problems", Key Engineering Materials, Vol. 774, pp. 473-478, 2018

Online since:

August 2018

Export:

Price:

$38.00

[1] A. González-Herrera, J. Zapatero, Influence of minimum element size to determine crack closure stress by the finite element method, Eng. Fract. Mech. 72 (2005) 337–355.

DOI: https://doi.org/10.1016/j.engfracmech.2004.04.002

[2] J. Garcia-Manrique, D. Camas, A. Gonzalez-Herrera, Study of the stress intensity factor analysis through thickness: methodological aspects, Fatigue Fract. Eng. Mater. Struct. 40 (2017) 1295–1308.

DOI: https://doi.org/10.1111/ffe.12574

[3] D. Camas, J. Garcia-Manrique, B. Moreno, A. Gonzalez-Herrera, Numerical modelling of three-dimensional fatigue crack closure: mesh refinement, Int. J. Fatigue. (2018)..

DOI: https://doi.org/10.1016/j.ijfatigue.2018.03.035

[4] D. Camas, J. Garcia-Manrique, A. Gonzalez-Herrera, Numerical study of the thickness transition in bi-dimensional specimen cracks, Int. J. Fatigue. 33 (2011) 921–928.

DOI: https://doi.org/10.1016/j.ijfatigue.2011.02.006

[5] D. Camas, J. Garcia-Manrique, A. Gonzalez-Herrera, Crack front curvature: Influence and effects on the crack tip fields in bi-dimensional specimens, Int. J. Fatigue. 44 (2012) 41–50.

DOI: https://doi.org/10.1016/j.ijfatigue.2012.05.012

[6] J. Garcia-Manrique, D. Camas-Peña, J. Lopez-Martinez, A. Gonzalez-Herrera, Analysis of the stress intensity factor along the thickness: The concept of pivot node on straight crack fronts, Fatigue Fract. Eng. Mater. Struct. 41 (2018).

DOI: https://doi.org/10.1111/ffe.12734

[7] J. Garcia-Manrique, D. Camas, P. Lopez-Crespo, A. Gonzalez-Herrera, Stress intensity factor analysis of through thickness effects, Int. J. Fatigue. 46 (2013) 58–66.

DOI: https://doi.org/10.1016/j.ijfatigue.2011.12.012

[8] J. Zapatero, A. Gonzalez-Herrera, Advances in the numerical modelling of fatigue crack closure using finite elements, in: A.F. Lignelli (Ed.), Fatigue Crack Growth Mech. Behav. Predict., Nova Science Publishers, New York, 2009: p.83–124.

[9] P. Lopez-Crespo, D. Camas-Pena, A. Gonzalez-Herrera, J.R. Yates, E.A. Patterson, J. Zapatero, Numerical and experimental analysis of crack closure, Key Eng. Mater. 385–387 (2008) 369–372.

DOI: https://doi.org/10.4028/www.scientific.net/kem.385-387.369

[10] F. V Antunes, L. Correia, D. Camas, R. Branco, Effect of compressive loads on plasticity induced crack closure, Theor. Appl. Fract. Mech. 80 (2015) 193–204.

DOI: https://doi.org/10.1016/j.tafmec.2015.09.001