Carbon Fibre Reinforced Polypropylene: An Electrical Conductivity Model

Article Preview

Abstract:

This Extrusion permit in controlling electrical conductivity before composite materials undergo the manufacturing process. However, studies on electrical conductivity in high conductive polymer composite materials are still in preliminary stage. Thus, the studies on electrical conductivity model are crucial as it able in predicting the electrical conductivity hence minimizing the experimental conducted. In this study, conductivity model was conducted to validate the series of experiment. The electrical conductivity increases as shear rate decrease and the highest electrical conductivity of 3 S/cm is obtained which indicated that the shear rate is crucial in increasing the electrical conductivity of the composites compared to extrusion temperature hence it is consider in the modelling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-34

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Dweiri, J. Sahari, Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC), J. Power Sources. 171 (2007) 2: 424–432.

DOI: 10.1016/j.jpowsour.2007.05.106

Google Scholar

[2] N. F. Asri, Interfacial Contact Resistance for Ti-6Al-4V and SUS 316L Plates as Bipolar Plates in PEMFC Fuel Cell Engineering , Institute of Fuel Cell , National University of Malaysia , Department of Power Electronics and Drive , Faculty of Electrical Engineering. 24 (2016) 4: 1436–1442.

Google Scholar

[3] M. Y. Zakaria, A. B. Sulong, J. Sahari, H. Suherman, Effect of the addition of milled carbon fiber as a secondary filler on the electrical conductivity of graphite/epoxy composites for electrical conductive material, Compos. Part B Eng. (2015) 83: 75–80.

DOI: 10.1016/j.compositesb.2015.08.034

Google Scholar

[4] B. K. Kakati, D. Sathiyamoorthy, and A. Verma, Semi-empirical modeling of electrical conductivity for composite bipolar plate with multiple reinforcements, Int. J. Hydrogen Energy. 36 (2011) 22: 14851–14857.

DOI: 10.1016/j.ijhydene.2011.02.136

Google Scholar

[5] T. Alomayri, F. U. A. Shaikh, I. M. Low, Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites, Mater. Des. 57 (2014) 0: 360–365.

DOI: 10.1016/j.matdes.2014.01.036

Google Scholar

[6] R. Dweiri, J. Sahari, Microstructural image analysis and structure–electrical conductivity relationship of single- and multiple-filler conductive composites, Compos. Sci. Technol. 68 (2008) 7–8: 1679–1687.

DOI: 10.1016/j.compscitech.2010.04.001

Google Scholar

[7] N. Hu, Z. Masuda, G. Yamamoto, H. Fukunaga, T. Hashida, J. Qiu, Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposites, Compos. Part A Appl. Sci. Manuf. 39 (2008) 5: 893–903.

DOI: 10.1016/j.compositesa.2008.01.002

Google Scholar

[8] Y. Nakayama, E. Takeda, T. Shigeishi, H. Tomiyama, T. Kajiwara, Melt-mixing by novel pitched-tip kneading disks in a co-rotating twin-screw extruder, Chem. Eng. Sci. 66 (2011) 1: 103–110.

DOI: 10.1016/j.ces.2010.10.022

Google Scholar

[9] R. Taherian, M. J. Hadianfard, A. N. Golikand, Manufacture of a polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane fuel cells, Mater. Des. 49 (2013) 0: 242–251.

DOI: 10.1016/j.matdes.2013.01.058

Google Scholar

[10] A. Adloo, M. Sadeghi, M. Masoomi, H. N. Pazhooh, High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells, Renew. Energy. (2016) 99: 867–874.

DOI: 10.1016/j.renene.2016.07.062

Google Scholar

[11] R. L. Barton, J. M. Keith, J. A. King, Electrical conductivity model evaluation of carbon fiber filled liquid crystal polymer composites, J. Appl. Polym. Sci. 106 (2007) 4: 2456–2462.

DOI: 10.1002/app.26877

Google Scholar

[12] R. A. Antunes, M. C. L. de Oliveira, G. Ett, V. Ett, Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance, J. Power Sources. 196 (2011) 6: 2945–2961.

DOI: 10.1016/j.jpowsour.2010.12.041

Google Scholar

[13] H. Suherman, J. Sahari, A. B. Sulong, Effect of small-sized conductive filler on the properties of an epoxy composite for a bipolar plate in a PEMFC, Ceram. Int. 39 (2013 6: 7159–7166.

DOI: 10.1016/j.ceramint.2013.02.059

Google Scholar

[14] N. A. Mohd Radzuan, A. B. Sulong, J. Sahari, A review of electrical conductivity models for conductive polymer composite, Int. J. Hydrogen Energy. 42 (2017) 14: 9262–9273.

DOI: 10.1016/j.ijhydene.2016.03.045

Google Scholar

[15] J. M. Keith, J. A. King, R. L. Barton, Electrical conductivity modeling of carbon-filled liquid-crystalline polymer composites, J. Appl. Polym. Sci. 102 (2016) 4: 3293–3300.

DOI: 10.1002/app.24748

Google Scholar

[16] R. Taherian, M. J. Hadianfard, A. N. Golikand, A new equation for predicting electrical conductivity of carbon-filled polymer composites used for bipolar plates of fuel cells, J. Appl. Polym. Sci. 128 (2013) 3:1497–1509.

DOI: 10.1002/app.38295

Google Scholar

[17] A. Kono, Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites," Polymer (Guildf). 53 (2012) 8: 1760–1764.

DOI: 10.1016/j.polymer.2012.02.048

Google Scholar

[18] A. Mejía, N. García, J. Guzmán, P. Tiemblo, Extrusion Processed Polymer Electrolytes based on Poly(ethylene oxide) and Modified Sepiolite Nanofibers: Effect of Composition and Filler Nature on Rheology and Conductivity, Electrochim. Acta. 137 (2014) 526–534.

DOI: 10.1016/j.electacta.2014.06.032

Google Scholar

[19] J. Wang, Shear induced fiber orientation, fiber breakage and matrix molecular orientation in long glass fiber reinforced polypropylene composites, Mater. Sci. Eng. A. 528 (2011) 7–8: 3169–3176.

DOI: 10.1016/j.msea.2010.12.081

Google Scholar

[20] G. A. Jimenez, S. C. Jana, Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing, Compos. Part A Appl. Sci. Manuf. 38 (2007) 3: 983–993.

DOI: 10.1016/j.compositesa.2006.06.017

Google Scholar

[21] Z. Fan, S. G. Advani, Characterization of orientation state of carbon nanotubes in shear flow, Polymer (Guildf). 46 (2005)14: 5232–5240.

DOI: 10.1016/j.polymer.2005.04.008

Google Scholar

[22] P. Pötschke, A. R. Bhattacharyya, A. Janke, Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion, Eur. Polym. J. 40 (2004) 1:137–148.

DOI: 10.1016/j.eurpolymj.2003.08.008

Google Scholar

[23] T. Köpplmayr, Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene, Polym. Test. 32 (2013) 3: 535–544.

DOI: 10.1016/j.polymertesting.2013.02.002

Google Scholar

[24] R. Taipalus, T. Harmia, M. Q. Zhang, K. Friedrich, The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: experimental characterisation and modelling, Compos. Sci. Technol. 61(2001) 6: 801–814.

DOI: 10.1016/s0266-3538(00)00183-4

Google Scholar

[25] M. Sharma, I. M. Rao, J. Bijwe, Influence of orientation of long fibers in carbon fiber–polyetherimide composites on mechanical and tribological properties, Wear. 267(2009) 5–8: 839–845.

DOI: 10.1016/j.wear.2009.01.015

Google Scholar

[26] S. Tungjitpornkull, N. Sombatsompop, Processing technique and fiber orientation angle affecting the mechanical properties of E-glass fiber reinforced wood/PVC composites, J. Mater. Process. Technol. 209 (2009) 6:3079–3088.

DOI: 10.1016/j.jmatprotec.2008.07.021

Google Scholar

[27] N. A. Mohd Radzuan, A. B. A. B. Sulong, M. Rao Somalu, Optimization of Milled Carbon Fibre Extrusion and Polypropylene Process for Conductive Polymer Composite, Sains Malaysiana. 45(2016) 1913–(1921).

DOI: 10.17576/jsm-2016-4512-16

Google Scholar