Carbon Fibre Reinforced Polypropylene: An Electrical Conductivity Model

Abstract:

Article Preview

This Extrusion permit in controlling electrical conductivity before composite materials undergo the manufacturing process. However, studies on electrical conductivity in high conductive polymer composite materials are still in preliminary stage. Thus, the studies on electrical conductivity model are crucial as it able in predicting the electrical conductivity hence minimizing the experimental conducted. In this study, conductivity model was conducted to validate the series of experiment. The electrical conductivity increases as shear rate decrease and the highest electrical conductivity of 3 S/cm is obtained which indicated that the shear rate is crucial in increasing the electrical conductivity of the composites compared to extrusion temperature hence it is consider in the modelling.

Info:

Periodical:

Edited by:

Al Emran Ismail, Muhamad Zaini Yunos, Reazul Haq Abdul Haq and Said Ahmad

Pages:

29-34

Citation:

N. A. M. Radzuan et al., "Carbon Fibre Reinforced Polypropylene: An Electrical Conductivity Model", Key Engineering Materials, Vol. 791, pp. 29-34, 2018

Online since:

November 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] R. Dweiri, J. Sahari, Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC), J. Power Sources. 171 (2007) 2: 424–432.

DOI: https://doi.org/10.1016/j.jpowsour.2007.05.106

[2] N. F. Asri, Interfacial Contact Resistance for Ti-6Al-4V and SUS 316L Plates as Bipolar Plates in PEMFC Fuel Cell Engineering , Institute of Fuel Cell , National University of Malaysia , Department of Power Electronics and Drive , Faculty of Electrical Engineering. 24 (2016) 4: 1436–1442.

[3] M. Y. Zakaria, A. B. Sulong, J. Sahari, H. Suherman, Effect of the addition of milled carbon fiber as a secondary filler on the electrical conductivity of graphite/epoxy composites for electrical conductive material, Compos. Part B Eng. (2015) 83: 75–80.

DOI: https://doi.org/10.1016/j.compositesb.2015.08.034

[4] B. K. Kakati, D. Sathiyamoorthy, and A. Verma, Semi-empirical modeling of electrical conductivity for composite bipolar plate with multiple reinforcements, Int. J. Hydrogen Energy. 36 (2011) 22: 14851–14857.

DOI: https://doi.org/10.1016/j.ijhydene.2011.02.136

[5] T. Alomayri, F. U. A. Shaikh, I. M. Low, Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites, Mater. Des. 57 (2014) 0: 360–365.

DOI: https://doi.org/10.1016/j.matdes.2014.01.036

[6] R. Dweiri, J. Sahari, Microstructural image analysis and structure–electrical conductivity relationship of single- and multiple-filler conductive composites, Compos. Sci. Technol. 68 (2008) 7–8: 1679–1687.

DOI: https://doi.org/10.1016/j.compscitech.2008.02.006

[7] N. Hu, Z. Masuda, G. Yamamoto, H. Fukunaga, T. Hashida, J. Qiu, Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposites, Compos. Part A Appl. Sci. Manuf. 39 (2008) 5: 893–903.

DOI: https://doi.org/10.1016/j.compositesa.2008.01.002

[8] Y. Nakayama, E. Takeda, T. Shigeishi, H. Tomiyama, T. Kajiwara, Melt-mixing by novel pitched-tip kneading disks in a co-rotating twin-screw extruder, Chem. Eng. Sci. 66 (2011) 1: 103–110.

DOI: https://doi.org/10.1016/j.ces.2010.10.022

[9] R. Taherian, M. J. Hadianfard, A. N. Golikand, Manufacture of a polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane fuel cells, Mater. Des. 49 (2013) 0: 242–251.

DOI: https://doi.org/10.1016/j.matdes.2013.01.058

[10] A. Adloo, M. Sadeghi, M. Masoomi, H. N. Pazhooh, High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells, Renew. Energy. (2016) 99: 867–874.

DOI: https://doi.org/10.1016/j.renene.2016.07.062

[11] R. L. Barton, J. M. Keith, J. A. King, Electrical conductivity model evaluation of carbon fiber filled liquid crystal polymer composites, J. Appl. Polym. Sci. 106 (2007) 4: 2456–2462.

DOI: https://doi.org/10.1002/app.26877

[12] R. A. Antunes, M. C. L. de Oliveira, G. Ett, V. Ett, Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance, J. Power Sources. 196 (2011) 6: 2945–2961.

DOI: https://doi.org/10.1016/j.jpowsour.2010.12.041

[13] H. Suherman, J. Sahari, A. B. Sulong, Effect of small-sized conductive filler on the properties of an epoxy composite for a bipolar plate in a PEMFC, Ceram. Int. 39 (2013 6: 7159–7166.

DOI: https://doi.org/10.1016/j.ceramint.2013.02.059

[14] N. A. Mohd Radzuan, A. B. Sulong, J. Sahari, A review of electrical conductivity models for conductive polymer composite, Int. J. Hydrogen Energy. 42 (2017) 14: 9262–9273.

DOI: https://doi.org/10.1016/j.ijhydene.2016.03.045

[15] J. M. Keith, J. A. King, R. L. Barton, Electrical conductivity modeling of carbon-filled liquid-crystalline polymer composites, J. Appl. Polym. Sci. 102 (2016) 4: 3293–3300.

DOI: https://doi.org/10.1002/app.24748

[16] R. Taherian, M. J. Hadianfard, A. N. Golikand, A new equation for predicting electrical conductivity of carbon-filled polymer composites used for bipolar plates of fuel cells, J. Appl. Polym. Sci. 128 (2013) 3:1497–1509.

DOI: https://doi.org/10.1002/app.38295

[17] A. Kono, Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites," Polymer (Guildf). 53 (2012) 8: 1760–1764.

DOI: https://doi.org/10.1016/j.polymer.2012.02.048

[18] A. Mejía, N. García, J. Guzmán, P. Tiemblo, Extrusion Processed Polymer Electrolytes based on Poly(ethylene oxide) and Modified Sepiolite Nanofibers: Effect of Composition and Filler Nature on Rheology and Conductivity, Electrochim. Acta. 137 (2014) 526–534.

DOI: https://doi.org/10.1016/j.electacta.2014.06.032

[19] J. Wang, Shear induced fiber orientation, fiber breakage and matrix molecular orientation in long glass fiber reinforced polypropylene composites, Mater. Sci. Eng. A. 528 (2011) 7–8: 3169–3176.

DOI: https://doi.org/10.1016/j.msea.2010.12.081

[20] G. A. Jimenez, S. C. Jana, Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing, Compos. Part A Appl. Sci. Manuf. 38 (2007) 3: 983–993.

DOI: https://doi.org/10.1016/j.compositesa.2006.06.017

[21] Z. Fan, S. G. Advani, Characterization of orientation state of carbon nanotubes in shear flow, Polymer (Guildf). 46 (2005)14: 5232–5240.

DOI: https://doi.org/10.1016/j.polymer.2005.04.008

[22] P. Pötschke, A. R. Bhattacharyya, A. Janke, Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion, Eur. Polym. J. 40 (2004) 1:137–148.

DOI: https://doi.org/10.1016/j.eurpolymj.2003.08.008

[23] T. Köpplmayr, Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene, Polym. Test. 32 (2013) 3: 535–544.

DOI: https://doi.org/10.1016/j.polymertesting.2013.02.002

[24] R. Taipalus, T. Harmia, M. Q. Zhang, K. Friedrich, The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: experimental characterisation and modelling, Compos. Sci. Technol. 61(2001) 6: 801–814.

DOI: https://doi.org/10.1016/s0266-3538(00)00183-4

[25] M. Sharma, I. M. Rao, J. Bijwe, Influence of orientation of long fibers in carbon fiber–polyetherimide composites on mechanical and tribological properties, Wear. 267(2009) 5–8: 839–845.

DOI: https://doi.org/10.1016/j.wear.2009.01.015

[26] S. Tungjitpornkull, N. Sombatsompop, Processing technique and fiber orientation angle affecting the mechanical properties of E-glass fiber reinforced wood/PVC composites, J. Mater. Process. Technol. 209 (2009) 6:3079–3088.

DOI: https://doi.org/10.1016/j.jmatprotec.2008.07.021

[27] N. A. Mohd Radzuan, A. B. A. B. Sulong, M. Rao Somalu, Optimization of Milled Carbon Fibre Extrusion and Polypropylene Process for Conductive Polymer Composite, Sains Malaysiana. 45(2016) 1913–(1921).

DOI: https://doi.org/10.17576/jsm-2016-4512-16