Ordering Сharacteristics of Titanium Dioxide Nanotubes in Anodic Coatings

Article Preview

Abstract:

In this paper, the ordering of the arrays of TiO2 nanotubes obtained by the method of anodic oxidation in the fluoro-containing aqueous-nonaqueous electrolytes containing glycerine and surface-active materials is investigated. For analysis of ordering, the two-dimensional Fourier spectrum, do-it-yourself configurational geometrical entropy and section of the two-dimensional autocorrelation function were used. These characteristics allow us to identify a nature of ordering in sufficient detail and to obtain the preliminary quantitative assessments of this order. It is found that, in the systems of titanium-oxide nanotubes, the stable, almost correct short-range order is established within the first coordination sphere. Such order is similar to the amorphous ordering. At the same time, the ordering of nanotubes arrays differs in detail from the amorphous one in the greater expressiveness of the typical scale the sizes of which can be estimated using the Fourier spectra as well as autocorrelation function.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Macak, Wachstum anodischer selbst-organisierter Titandioxid Nanoröhren Schichten, Ph.D. thesis, University of Erlangen-Nurnberg, (2008).

Google Scholar

[2] A.N. Belov, The formation of nanostructures based on porous anodic metal oxides, Ph.D. thesis, Moscow State University, (2011).

Google Scholar

[3] D.I. Petukhov, I.V. Kolesnik, A.A. Eliseev, A.V. Lukashin, and Yu.D. Tretyakov, Al'ternativnaya energetika i ekologiya 45 (2007) 65-69.

Google Scholar

[4] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Current Opinion in Solid State and Materials Sci. 11 (2007) 3-18.

DOI: 10.1016/j.cossms.2007.08.004

Google Scholar

[5] A.N. Belov, I.M. Gavrilin, S.A. Gavrilov, A.A. Dronov, and A.S. Shulyatyev, Highly ordered arrays of TiO2 nanotubes in flexible photovoltaic cells, Izvestiya Vuzov. Elektronika 88 (2011) 39-40.

Google Scholar

[6] J.M. Macak, P.J. Barczuk, H. Tsuchiya, M.Z. Novakovska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P.J. Kulesza, and P. Schmuki, Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol, Electrochem. Comm. 7 (2005) 1417-1422.

DOI: 10.1016/j.elecom.2005.09.031

Google Scholar

[7] D. Fang, Z. Lio, K. Huang, and D.C. Lagoudas, Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane, App. Surface S. 257 (2011) 6451-6461.

DOI: 10.1016/j.apsusc.2011.02.037

Google Scholar

[8] A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semi-conductor Electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[9] O.V. Lozovaya, M.P. Tarasevich, I.V. Bogdanovskaya, I.V. Kasatkina, and A.I. Scherbakova, Electrochemical synthesis, investigation and modification of TiO2 nanotubes, Fizikokhimiya poverkhnosti i zaschita materialov 47 (2011) 45-50.

Google Scholar

[10] D. Jasin, A. Abu-Rabi, S. Mentus, and D. Jovanovic, Oxygen reduction reaction on spontaneously and potentiodynamically formed Au/TiO2 composite, Electrochim. Acta. 52 (2007) 4581-4588.

DOI: 10.1016/j.electacta.2006.12.071

Google Scholar

[11] D.B. Percival; A.T. Walden (1993). Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge University Press, Cambridge, (1993).

Google Scholar

[12] N.F.G. Martin and J.W. England. Mathematical Theory of Entropy, Addison-Wesley Publishing Company, London, (1981).

Google Scholar

[13] V.V. Yudin, P.L. Titov, A.N. Mikhalyuk, Percolation of entropy functionals on Cayley tree graphs as a method of order-disorder character diagnostics of complex structures, Bulletin of the RAS: Physics 73 (2009) 1269-1276.

DOI: 10.3103/s1062873809090202

Google Scholar

[14] V.V. Yudin, P.L. Titov, A.N. Mikhalyuk, Entropic measure of the order-disorder character in lattice systems in the representation of coordination Cayley tree graphs, Theoretical and Mathematical Physics 164 (2010) 905-919.

DOI: 10.1007/s11232-010-0072-9

Google Scholar

[15] A. Mihalyuk, P. Titov, V. Yudin, Penrose tiling fractality in coordination Cayley's tree graphs representation, Physica A 389 (2010) 4127-4139.

DOI: 10.1016/j.physa.2010.06.008

Google Scholar

[16] M. Soltanalian, P. Stoica, Computational design of sequences with good correlation properties, IEEE Transactions on Signal Processing, 60.5 (2012) 2180-2193.

DOI: 10.1109/tsp.2012.2186134

Google Scholar