Influence of Etching Regimes on the Reflectance of Black Silicon Films Formed by Ni-Assisted Chemical Etching

Article Preview

Abstract:

This paper examines the influence of etching regimes on the reflectance of black silicon formed by Ni-assisted chemical etching. Black silicon exhibits properties of high light absorptance. The measured minimum values of the reflectance (R-min) of black silicon with thickness of 580 nm formed by metal-assisted chemical etching (MACE) for 60 minutes at 460 lx illumination were 2,3% in the UV region (200–400 nm), 0,5% in the visible region (400–750 nm) and 0,3% in the IR region (750–1300 nm). The findings showed that the reflectance of black silicon depends on its thickness, illumination and treatment duration. In addition, the porosity and refractive index were calculated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-29

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Otto, M. Algasinger, H. Branz, B. Gesemann, Th. Gimpel, K. Füchsel, Th. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, Black Silicon Photovoltaics, Adv. Optical Mater. 3 (2015) 147–164.

DOI: 10.1002/adom.201400395

Google Scholar

[2] T. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett. 73 (1998) 1673–1675.

DOI: 10.1063/1.122241

Google Scholar

[3] J. Yoo, Y.U. Gwonjong, Y.I. Junsin, Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE), Sol. Energy Mater Sol Cells. 95 (2011) 2–6.

DOI: 10.1016/j.solmat.2010.03.029

Google Scholar

[4] Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang and X. Duan, Electrically conductive and optically active porous silicon nanowires, Nano Lett. 9(12) (2009) 4539-4543.

DOI: 10.1021/nl903030h

Google Scholar

[5] S. Liu, C. Palsule, S. Yi, S. Gangopadhyay, Characterization of stain-etched porous silicon, Phys. Rev. B. 49 (15) (1994) 10318-10325.

DOI: 10.1103/physrevb.49.10318

Google Scholar

[6] C. M. A. Ashruf, P. J. French, P. M. M. C. Bressers, P. M. Sarro, J. J. Kelly, A new contactless electrochemical etch-stop based on a gold/silicon/TMAH galvanic cell, Sens. Actuators A: Phys.66 (1) (1998) 284-291.

DOI: 10.1016/s0924-4247(97)01711-1

Google Scholar

[7] X. Li and P. W. Bonn, Metal-assisted chemical etching in HF:H2O2 produces porous silicon, Appl. Phys. Lett. 77 (2000) 2572-2574.

DOI: 10.1063/1.1319191

Google Scholar

[8] C. Chartier, S. Bastide, C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF-H2O2, Electrochimica Acta. 53 (17) (2008) 5509-5516.

DOI: 10.1016/j.electacta.2008.03.009

Google Scholar

[9] K. Kolasinski, The mechanism of galvanic/metal-assisted etching of silicon, Nanoscale Research Letters. 9(1) (2014) 432-439.

DOI: 10.1186/1556-276x-9-432

Google Scholar

[10] O.V. Volovlikova, S.A. Gavrilov, A.V. Sysa, A.I. Savitskiy, A.Yu. Berezkina, Ni-activated photo-electrochemical formation of por-Si in HF/H2O2/H2O Solution, Proceedings of the 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference, (2017) 1213-1216.

DOI: 10.1109/eiconrus.2017.7910779

Google Scholar

[11] Z. Yue, H. Shen, Y. Jiang et al., Formation and mechanism of silicon nanostructures by Ni-assisted etching, J Mater Sci: Mater Electron. 25(3) (2014) 1559-1563.

DOI: 10.1007/s10854-014-1768-7

Google Scholar

[12] P. Narayanan. Photoelectrochemical etching of isolated, high aspect ratio microstructures in n-type silicon (100),, A Thesis, (2007).

DOI: 10.31390/gradschool_theses.4273

Google Scholar

[13] M. Lipinski, J. Cichoszewski, R.P. Socha, and T. Piotrowski, Porous Silicon Formation by Metal-Assisted Chemical Etching, Acta Phys. Polon. A. 116 (2009) 117-119.

DOI: 10.12693/aphyspola.116.s-117

Google Scholar

[14] H. Han, Z. Huang, W. Lee, Metal-assisted chemical etching of silicon and nanotechnology applications, NanoToday. 9 (2014) 271-304.

Google Scholar

[15] A.E. Sanli, A. Aytaç, Electrochemistry of the Nickel Electrode as a Cathode Catalyst in the Media of Acidic Peroxide for Application of the Peroxide Fuel Cell, ECS Transactions. 42 (1) (2012) 3-22.

DOI: 10.1149/1.4705474

Google Scholar

[16] N.M. Ravindra, S.R. Marthi, S. Sekhri, Modeling of optical properties of black silicon/crystalline silicon, J Sci Ind Metrol. 1(1) (2015) 1.

Google Scholar

[17] G. Barillaro, P. Bruschi, A. Diligenti, A. Nannini, Fabrication of regular silicon microstructures by photo-electrochemical etching of silicon, Physica Status Solidi (C). 2(9) (2005) 3198 – 3202.

DOI: 10.1002/pssc.200461110

Google Scholar

[18] V. Chamard, S. Setzu, R. Romestain, Light assisted formation of porous silicon investigated by X-ray diffraction and reflectivity, Applied Surface Science. 191 (1-4) (2002) 319-327.

DOI: 10.1016/s0169-4332(02)00256-8

Google Scholar

[19] C. Pickering, M.I.J. Beale, D.J. Robbins, P.J. Pearson, R. Greef, Optical properties of porous silicon films, Thin Solid Films. 125 (1-2) (1985) 157-163.

DOI: 10.1016/0040-6090(85)90408-0

Google Scholar

[20] W. Theibeta, S. Henkel, M. Arntzen, Connecting microscopic and macroscopic properties of porous media: choosing appropriate effective medium concepts, Thin Solid Films. 255 (1995) 177–180.

DOI: 10.1016/0040-6090(94)05649-x

Google Scholar