Chaotic Potential on the Degenerated Semiconductor Surface

Article Preview

Abstract:

In this paper, natural heterogeneities of the potential on the degenerated semiconductor surface are discussed as well as the barrier height fluctuations in metal-semiconductor contacts. In the case of electroactive dopant linear screening, characteristic values of chaotic potential amplitudes have been defined. The dependence is shown of these heterogeneities on semiconductor electrophysical parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-23

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.Ya. Shik, L.G. Bakueva, S.F. Musikhin, S.A. Rykov. Physics of low-dimensional systems. Ed. A.Ya. Shik. Nauka, St. Petersburg, (2001).

Google Scholar

[2] G. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho. Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533-1601 (2001).

DOI: 10.1088/0034-4885/64/11/204

Google Scholar

[3] A.K.M. Newaz, W. Song, E.E. Mendez, Y. Lin, J. Nitta. Shot-noise characteristics of triple-barrier resonant-tunneling diodes. Phys. Rev. B., 71, 195303-1-195303-5 (2005).

DOI: 10.1103/physrevb.71.195303

Google Scholar

[4] M. Asada, S. Suzuki, N. Kishimoto. Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. of Appl. Phys., 47, No. 6, 4375-4384 (2008).

DOI: 10.1143/jjap.47.4375

Google Scholar

[5] A.M. Nazmul, T. Amemiya, Y. Shuto, S. Sugahara, M. Tanaka. High temperature ferromagnetism in GaAs-based heterostructures with Mn δ doping. Phys. Rev. Lett., 95, 017201-1-017201-4 (2005).

DOI: 10.1103/physrevlett.96.149901

Google Scholar

[6] M.J. Wilson, G. Xiang, B.L. Sheu, P. Schiffer, N. Samarth, S.J. May, A. Bhattacharya. Substrate orientation dependence of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett., 93, 262502-1-262502-3 (2008).

DOI: 10.1063/1.3058758

Google Scholar

[7] T. Anan, M. Yamada, K. Tokutome, S. Sugou, K. Nishi, A. Kamei. Room-temperature pulsed operation of GaAsSb-GaAs vertical-cavity surface-emitting lasers. Electron. Lett., 35, 903-904 (1999).

DOI: 10.1049/el:19990633

Google Scholar

[8] P. Dowd, S.R. Johnson, S.A. Feld, M. Adamcyk, S.A. Chaparro, J. Joseph, K. Hilgers, M.P. Horning, K. Shiralagi, Y.-H. Zhang. Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications applications. Appl. Electron. Lett., 39, 987-988 (2003).

DOI: 10.1049/el:20030664

Google Scholar

[9] Yu. G. Sadofyev, N. Samal, B. A. Andreev, V. I. Gavrilenko, S. V. Morozov, A. G. Spivakov, and A. N. Yablonsky. GaAsSb/GaAs strained structures with quantum wells for lasers with emission wavelength near 1.3 μm. Semiconductors, 44, 405-412 (2010).

DOI: 10.1134/s1063782610030231

Google Scholar

[10] T. V. Blank and Yu. A. Gol'dberg. Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors, 41, 1263-1292 (2007).

DOI: 10.1134/s1063782607110012

Google Scholar

[11] Vainshtein, S. N., Duan, G., Filimonov, A. V., and Kostamovaara, J. T. Switching mechanisms triggered by a collector voltage ramp in avalanche transistors with short-connected base and emitter. IEEE Transactions on Electron Devices, 63(8), 3044-3048 (2016).

DOI: 10.1109/ted.2016.2581320

Google Scholar

[12] A. V. Sachenko, A. E. Belyaev, and R. V. Konakova. On a new mechanism for the realization of ohmic contacts. Semiconductors, 52, 131-135 (2018).

DOI: 10.1134/s1063782618010190

Google Scholar

[13] B.I. Shklovskiĭ and A.L. Efros. Electronic properties of doped semiconductors. Nauka, Moscow, 1979; Springer-Verlag, New York, (1984).

Google Scholar

[14] N.F. Mott, E.A. Davis. Electronic processes in non-crystalline materials. Clarendon press, Oxford, (1971).

Google Scholar

[15] V. L. Bonch-Bruevich, I. P. Zvyagin, R. Kaiper, A.G. Mironov, R. Enderlain, and B. Esser. Electronic theory of disordered semiconductors. Nauka, Moscow, (1981).

Google Scholar

[16] V.B. Bondarenko, M.V. Kuz'min, V.V. Korablev. Analysis of inherent potential nonuniformities at the extrinsic-semiconductor surface. Semiconductors, 35, 927-931 (2001).

DOI: 10.1134/1.1393029

Google Scholar

[17] V.B. Bondarenko, S.N. Davydov, and A.V. Filimonov. Inherent potential inhomogeneity on the semiconductor surface for equilibrium impurity distribution. Semiconductors, 44, 41-44 (2010).

DOI: 10.1134/s1063782610010069

Google Scholar

[18] Bondarenko, V. B., Filimonov, A. V., Koroleva, E. Y. The Schottky barrier at homogeneous impurity distribution in a semiconductor. Journal of Surface Investigation, 4(5), 859-861 (2010).

DOI: 10.1134/S1027451010050290

Google Scholar

[19] M.V. Fedoryuk. Method of pass. Nauka, Moscow, (1977).

Google Scholar

[20] L.D. Landau and E.M. Lifshitz. Course of theoretical physics, vol. 8: Electrodynamics of continuous media. Nauka, Moscow, 1982; Pergamon, New York, (1984).

Google Scholar

[21] S. M. Sze. Physics of Semiconductor Devices. Bell Laboratories, Incorporated Murray Hill, New Jersey A Wiley-Interscience Publication John Wiley & Sons. New York, Chichester, Brisbar, Toronto, Singapore, (1981).

Google Scholar

[22] D. Hudson. Statistics. Lectures on elementary statistics and probability. CERN Report, Geneva, (1964).

Google Scholar