[1]
A.Ya. Shik, L.G. Bakueva, S.F. Musikhin, S.A. Rykov. Physics of low-dimensional systems. Ed. A.Ya. Shik. Nauka, St. Petersburg, (2001).
Google Scholar
[2]
G. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho. Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533-1601 (2001).
DOI: 10.1088/0034-4885/64/11/204
Google Scholar
[3]
A.K.M. Newaz, W. Song, E.E. Mendez, Y. Lin, J. Nitta. Shot-noise characteristics of triple-barrier resonant-tunneling diodes. Phys. Rev. B., 71, 195303-1-195303-5 (2005).
DOI: 10.1103/physrevb.71.195303
Google Scholar
[4]
M. Asada, S. Suzuki, N. Kishimoto. Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. of Appl. Phys., 47, No. 6, 4375-4384 (2008).
DOI: 10.1143/jjap.47.4375
Google Scholar
[5]
A.M. Nazmul, T. Amemiya, Y. Shuto, S. Sugahara, M. Tanaka. High temperature ferromagnetism in GaAs-based heterostructures with Mn δ doping. Phys. Rev. Lett., 95, 017201-1-017201-4 (2005).
DOI: 10.1103/physrevlett.96.149901
Google Scholar
[6]
M.J. Wilson, G. Xiang, B.L. Sheu, P. Schiffer, N. Samarth, S.J. May, A. Bhattacharya. Substrate orientation dependence of ferromagnetism in (Ga,Mn)As. Appl. Phys. Lett., 93, 262502-1-262502-3 (2008).
DOI: 10.1063/1.3058758
Google Scholar
[7]
T. Anan, M. Yamada, K. Tokutome, S. Sugou, K. Nishi, A. Kamei. Room-temperature pulsed operation of GaAsSb-GaAs vertical-cavity surface-emitting lasers. Electron. Lett., 35, 903-904 (1999).
DOI: 10.1049/el:19990633
Google Scholar
[8]
P. Dowd, S.R. Johnson, S.A. Feld, M. Adamcyk, S.A. Chaparro, J. Joseph, K. Hilgers, M.P. Horning, K. Shiralagi, Y.-H. Zhang. Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications applications. Appl. Electron. Lett., 39, 987-988 (2003).
DOI: 10.1049/el:20030664
Google Scholar
[9]
Yu. G. Sadofyev, N. Samal, B. A. Andreev, V. I. Gavrilenko, S. V. Morozov, A. G. Spivakov, and A. N. Yablonsky. GaAsSb/GaAs strained structures with quantum wells for lasers with emission wavelength near 1.3 μm. Semiconductors, 44, 405-412 (2010).
DOI: 10.1134/s1063782610030231
Google Scholar
[10]
T. V. Blank and Yu. A. Gol'dberg. Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors, 41, 1263-1292 (2007).
DOI: 10.1134/s1063782607110012
Google Scholar
[11]
Vainshtein, S. N., Duan, G., Filimonov, A. V., and Kostamovaara, J. T. Switching mechanisms triggered by a collector voltage ramp in avalanche transistors with short-connected base and emitter. IEEE Transactions on Electron Devices, 63(8), 3044-3048 (2016).
DOI: 10.1109/ted.2016.2581320
Google Scholar
[12]
A. V. Sachenko, A. E. Belyaev, and R. V. Konakova. On a new mechanism for the realization of ohmic contacts. Semiconductors, 52, 131-135 (2018).
DOI: 10.1134/s1063782618010190
Google Scholar
[13]
B.I. Shklovskiĭ and A.L. Efros. Electronic properties of doped semiconductors. Nauka, Moscow, 1979; Springer-Verlag, New York, (1984).
Google Scholar
[14]
N.F. Mott, E.A. Davis. Electronic processes in non-crystalline materials. Clarendon press, Oxford, (1971).
Google Scholar
[15]
V. L. Bonch-Bruevich, I. P. Zvyagin, R. Kaiper, A.G. Mironov, R. Enderlain, and B. Esser. Electronic theory of disordered semiconductors. Nauka, Moscow, (1981).
Google Scholar
[16]
V.B. Bondarenko, M.V. Kuz'min, V.V. Korablev. Analysis of inherent potential nonuniformities at the extrinsic-semiconductor surface. Semiconductors, 35, 927-931 (2001).
DOI: 10.1134/1.1393029
Google Scholar
[17]
V.B. Bondarenko, S.N. Davydov, and A.V. Filimonov. Inherent potential inhomogeneity on the semiconductor surface for equilibrium impurity distribution. Semiconductors, 44, 41-44 (2010).
DOI: 10.1134/s1063782610010069
Google Scholar
[18]
Bondarenko, V. B., Filimonov, A. V., Koroleva, E. Y. The Schottky barrier at homogeneous impurity distribution in a semiconductor. Journal of Surface Investigation, 4(5), 859-861 (2010).
DOI: 10.1134/S1027451010050290
Google Scholar
[19]
M.V. Fedoryuk. Method of pass. Nauka, Moscow, (1977).
Google Scholar
[20]
L.D. Landau and E.M. Lifshitz. Course of theoretical physics, vol. 8: Electrodynamics of continuous media. Nauka, Moscow, 1982; Pergamon, New York, (1984).
Google Scholar
[21]
S. M. Sze. Physics of Semiconductor Devices. Bell Laboratories, Incorporated Murray Hill, New Jersey A Wiley-Interscience Publication John Wiley & Sons. New York, Chichester, Brisbar, Toronto, Singapore, (1981).
Google Scholar
[22]
D. Hudson. Statistics. Lectures on elementary statistics and probability. CERN Report, Geneva, (1964).
Google Scholar