Strength Determination Based on the Results of Modeling the Crack Propagation in a Nanostructured Hard Alloy

Article Preview

Abstract:

The process of crack propagation from the initial pore in the microstructures of WC-Co alloys with different volume fraction of the cobalt phase was studied by simulation of the stressed state by the finite element method. A calculation of the energy release rate during the propagation of crack through sections which consist of the carbide grains and the cobalt phase was made. It is shown that the strain energy release rate increases with crack propagation in WC grains and decreases with crack propagation in the intermediate layers of cobalt. The maximum stresses required for the destruction of the cobalt layer determine the strength of the entire microstructure. The strength of the alloy increases when decreasing pore diameter and increasing the cobalt phase fraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Gille, B. Szesny, K. Dreyer, H. van den Berg, J. Schmidt, T. Gestrich, G.Leitner, Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts, International Journal of Refractory Metals & Hard Materials. 20 (2002) 3–22.

DOI: 10.1016/s0263-4368(01)00066-x

Google Scholar

[2] Z.Z. Fang, Correlation of transverse rupture strength of WC-Co with hardness, International Journal of Refractory Metals & Hard Materials. 23 (2005) 119-127.

DOI: 10.1016/j.ijrmhm.2004.11.005

Google Scholar

[3] C. McVeigh, V.K. Liu, Multiresolution modeling of ductile reinforced brittle composites, Journal of the Mechanics and Physics of Solids. 57 (2009) 244-267.

DOI: 10.1016/j.jmps.2008.10.015

Google Scholar

[4] S. Honle, S. Shmauder, Micromechanical simulation of crack growth in WC/Co using embedded unit cells, Computational materials science. 13 (1998) 56-60.

DOI: 10.1016/s0927-0256(98)00045-7

Google Scholar

[5] U. A. Ozden, G. Chen, A. Bezold, C. Broeckmann, Numerical Investigation on the Size Effect of WC/Co 3D Representative Volume Element Based on the Homogenized Elasto-Plastic Response and Fracture Energy Dissipation // Key Engineering Materials. 592-593 (2014) 153-156.

DOI: 10.4028/www.scientific.net/kem.592-593.153

Google Scholar

[6] M.H Pech., H.F. Fischmeister, D. Kaute, R.Spiegler, FE-modellig oft he Deformation behaviour of WC-Co allos, Computational materials science. 1 (1993) 213-224.

DOI: 10.1016/0927-0256(93)90013-d

Google Scholar

[7] H., Engqvist, U.Wiklund, Mapping of mechanical properties of WC-Co using nanoindentation, Tribology Letters. 8 (2000) 147-152.

Google Scholar

[8] C.S. Kim, T.R. Massa, G.S. Rohrer, Modeling the relationship between microstructural features and the strength of WC-Co composites, International Journal of Refractory Metals & Hard Materials. 24 (2006), 89-100.

DOI: 10.1016/j.ijrmhm.2005.04.011

Google Scholar

[9] M.I. Dvornik, E.A. Mikhailenko, Modelirovaniye protsessa rasprostraneniya treshchiny v submikronnykh i nanostrukturnykh tverdykh splavakh, Mekhanika kompozitsionnykh materialov i konstruktsiy. 20 (2014) 3-15.

Google Scholar

[10] V.A. Franklin, T. Christopher, Fracture Energy Estimation of DCB Specimens Made of Glass/Epoxy: An Experimental Study, Advances in Materials Science and Engineering. (2013) 1-7.

DOI: 10.1155/2013/412601

Google Scholar

[11] F. Felten, G.A. Schneider, T. Sadowski, Estimation of R-curve in WC/Co cermet by CT test, International Journal of Refractory Metals & Hard Materials. 26 (2008) 55-60.

DOI: 10.1016/j.ijrmhm.2007.01.005

Google Scholar