[1]
D. Yamashita, H. Sato, M. Miyamoto, et al., Hydroxyapatite coating on zirconia using glass coating technique. J Ceram Soc Japan 116 (2008) 20–22.
DOI: 10.2109/jcersj2.116.20
Google Scholar
[2]
F. Filser, P. Kocher, F. Weibel, H. Lüthy, P. Schärer GL, Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int J Comput Dent 4 (2001) 184.
DOI: 10.1016/b978-008042692-1/50103-5
Google Scholar
[3]
C. Ying Kei Lung, Surface coatings of titanium and zirconia. Adv Mater Sci 2 (2017) 1–3.
DOI: 10.15761/ams.1000124
Google Scholar
[4]
A. Cahyanto, M. Maruta, K. Tsuru, et al., Fabrication of bone cement that fully transforms to carbonate apatite. Dent Mater J 34 (3)(2015) 394-401.
DOI: 10.4012/dmj.2014-328
Google Scholar
[5]
A. Cahyanto, R. Toita, K. Tsuru, K. Ishikawa, Effect of particle size on carbonate apatite cement properties consisting of calcite (or vaterite) and dicalcium phosphate anhydrous, Key Eng. Mater. 631 (2015) 128-133.
DOI: 10.4028/www.scientific.net/kem.631.128
Google Scholar
[6]
A. Cahyanto, K. Tsuru, K. Ishikawa and M. Kikuchi. Mechanical strength improvement of apatite cement using hydroxyapatite/collagen nanocomposite, Key Eng. Mater. 720 (2017) 167- 172.
DOI: 10.4028/www.scientific.net/kem.720.167
Google Scholar
[7]
A. Cahyanto, A.G. Imaniyyah, M.N. Zakaria, Z. Hasratiningsih, Mechanical strength properties of injectable carbonate apatite cement with various concentration of sodium carboxymethyl cellulose, Key Eng. Mater. 758 (2017) 56-60.
DOI: 10.4028/www.scientific.net/kem.758.56
Google Scholar
[8]
A. Cahyanto, M. Restunaesha, M.N. Zakaria, A. Rezano, A. El-ghannam, Compressive strength evaluation and phase analysis of pulp capping materials based on carbonate apatite-SCPC using different concentration of SCPC and calcium hydroxide, Key Eng. Mater. 782 (2018) 15-20.
DOI: 10.4028/www.scientific.net/kem.782.15
Google Scholar
[9]
M. Hirota, T. Hayakawa, C. Ohkubo, et al., Bone responses to zirconia implants with a thin carbonate-containing hydroxyapatite coating using a molecular precursor method. J Biomed Mater Res - Part B Appl Biomater 102 (2014) 1277–1288.
DOI: 10.1002/jbm.b.33112
Google Scholar
[10]
A. Cahyanto, M. Maruta, K. Tsuru, et al., Basic Properties of carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous. Key Eng Mater 529-530 (2012) 192-196.
DOI: 10.4028/www.scientific.net/kem.529-530.192
Google Scholar
[11]
M. Guazzato, M. Albakry, M. Swain, et al., Mechanical properties of in-ceram alumina and in-ceram zirconia. Int J Prosthodont 15 (2002) 339-46.
Google Scholar
[12]
B. Della, K. J. Anusavice, P.H. DeHoff, Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent Mater19 (2003) 662-9.
DOI: 10.1016/s0109-5641(03)00010-1
Google Scholar
[13]
K. Shahramian, H.V. Leminen, Meretoja, et al., Sol–gel derived bioactive coating on zirconia: Effect on flexural strength and cell proliferation. J Biomed Mater Res - Part B Appl Biomater 105 (2017) 2401–2407.
DOI: 10.1002/jbm.b.33780
Google Scholar
[14]
J. Barralet, J. C. Knowles, S. Best, W. Bonfield,. Journal of Materials Science: Materials in Medicine, 13(6) (2002) 529–533.
DOI: 10.1023/a:1015175108668
Google Scholar
[15]
E. Landi, A. Tampieri, G. Celotti, L. Vichi, M. Sandri, Influence of synthesis and sintering parameters on the characteristics of carbonate apatite, J Biomaterials 25 (10) (2004) 1763-1770.
DOI: 10.1016/j.biomaterials.2003.08.026
Google Scholar
[16]
ISO International Standart No.6872 (Dentistry — Ceramic materials). Switzerland: International Organization for Standarization, (2015).
Google Scholar
[17]
F. Ozer, A. Naden, V.Turp , et al., Effect of thickness and surface modifications on flexural strength of monolithic zirconia. J Prosthet Dent 119 (2018) 987-93.
DOI: 10.1016/j.prosdent.2017.08.007
Google Scholar
[18]
C. Piconi, W. Burger, H. Richter G, et al., Y-TZP ceramics for artificial joint replacements. In: Biomaterials 20 (1998) 1-25.
DOI: 10.1016/s0142-9612(98)00064-7
Google Scholar
[19]
D. Porter L, A. Heuer H, Mechanisms of toughening partially stabilized zirconia (PSZ). J Am Ceram Soc 60 (1977)183-84.
DOI: 10.1111/j.1151-2916.1977.tb15509.x
Google Scholar
[20]
T. Kosmac, C. Oblak, P. Jevnikar, et al., Strength and reliability of surface treated Y-TZP dental ceramics. J Biomed Mater Res 53 (2000) 304-13.
DOI: 10.1002/1097-4636(2000)53:4<304::aid-jbm4>3.0.co;2-s
Google Scholar
[21]
I. Denry, J. R. Kelly, State of the art of zirconia for dental applications. Dent Mater 24 (2008) 299–307.
DOI: 10.1016/j.dental.2007.05.007
Google Scholar
[22]
N. Amat F, A. Muchtar, M. Amril S, et al., Preparation of presintered zirconia blocks for dental restorations through colloidal dispersion and cold isostatic pressing. Ceram Int 44 (2018) 6409-16.
DOI: 10.1016/j.ceramint.2018.01.035
Google Scholar
[23]
B. Stawarczyk, M. Özcan, L. Hallmann, et al., The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 17 (2013) 269–274.
DOI: 10.1007/s00784-012-0692-6
Google Scholar
[24]
J. Chevalier, C. Olagnon, G. Fantozzi, Subcritical crack propagation in 3Y-TZP ceramics: static and cyclic fatigue. J Am Ceram Soc 82 (1999) 3129-38.
DOI: 10.1111/j.1151-2916.1999.tb02213.x
Google Scholar
[25]
Gautam C, Joyner J, Gautam A, et al., Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalt Trans (2016) 19194-19215.
DOI: 10.1039/c6dt03484e
Google Scholar