[1]
M. Gahlert, T. Gudehus, S. Eichhorn, E. Steinhauser, H. Kniha, W. Erhardt, Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs, Clin. Oral Implants Res. 18 (2007) 662–668.
DOI: 10.1111/j.1600-0501.2007.01401.x
Google Scholar
[2]
Z. Ozkurt, E. Kazazoglu, Zirconia dental implants: A literature review, J. Oral Implant. 37 (2011) 367-76.
Google Scholar
[3]
P.F. Manicone, P.R. Iommetti, L. Raffaelli, An overview of zirconia ceramics: Basic properties and clinical applications, J Dent. 35 (2007) 819–826.
DOI: 10.1016/j.jdent.2007.07.008
Google Scholar
[4]
C. Vaquero-Aguilar, M. Jiménez-Melendo, D. Torres-Lagares, et al., Zirconia implant abutments: Microstructural analysis, Int. J. Oral Maxillofac. Implants. 27 (2012) 785–791.
Google Scholar
[5]
C.L. Chang, C.S. Chen, T.C. Yeung, M.L. Hsu, Biomechanical efect of a zirconia dental implant-crown system: A three-dimensional finite element analysis, Int. J. Oral Maxillofac. Implants. 27 (2012) e49–e57.
Google Scholar
[6]
G. Manzano, R.L. Herrero, J. Montero, Comparison of clinical performance of zirconia implants and titanium implants in animal models: A systematic review, Int. J. Oral Maxillofac. Implants 29 (2014) 311–320.
DOI: 10.11607/jomi.2817
Google Scholar
[7]
S.W. Pyo, Y.M. Kim, C.S. Kim, I.S. Lee, J.U. Park, Bone formation on biomimetic calcium phosphate-coated and zoledronate-immobilized titanium implants in osteoporotic rat tibiae, Int. J. Oral Maxillofac. Implants 29 (2014) 478–484.
DOI: 10.11607/jomi.3423
Google Scholar
[8]
D.D. Bosshardt, V. Chappuis, D. Buser, Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions, Periodontology 2000. 73 (2017) 22-40.
DOI: 10.1111/prd.12179
Google Scholar
[9]
A. Wennerberg, T. Albrektsson, On implant surfaces: a review of current knowledge and opinions, Int. J. Oral Maxillofac. Implants 25 (2010) 63-74.
Google Scholar
[10]
R.R. Barros, A.B. Novaes Jr, V. Papalexiou, S.L. Souza, M. Taba, D.B. Palioto, et al., Effect of biofunctionalized implant surface on osseointegration: A histomorphometric study in dogs, Braz. Dent. J. 20 (2009) 91-98.
DOI: 10.1590/s0103-64402009000200001
Google Scholar
[11]
Y. Doi, T. Shibutani, Y. Moriwaki, T. Kajimoto, Sintered carbonate apatites as bioresorbable bone substitutes, J. Biomed. Mater. Res. 39 (1998) 603–610.
DOI: 10.1002/(sici)1097-4636(19980315)39:4<603::aid-jbm15>3.0.co;2-7
Google Scholar
[12]
A. Cahyanto, M. Maruta, K. Tsuru, S. Matsuya and K, Ishikawa, Fabrication of bone cement that fully transforms to carbonate apatite, Dent. Mater. J. 34 (2015) 394–401.
DOI: 10.4012/dmj.2014-328
Google Scholar
[13]
A. Cahyanto, K. Ishikawa, K. Tsuru, Effect of setting atmosphere on apatite cement resorption: An in vitro and in vivo study, J. Mech. Behav. Biomed. Mater. 88 (2018) 463-469.
DOI: 10.1016/j.jmbbm.2018.08.021
Google Scholar
[14]
M.N. Zakaria, N.F.N. Pauziah, I.P. Sabirin, A. Cahyanto, Evaluation of carbonate apatite cement in inducing formation of reparative dentin in exposed dental pulp, Key Eng. Mater. 758 (2017) 250-254.
DOI: 10.4028/www.scientific.net/kem.758.250
Google Scholar
[15]
L. Geros RZ, Calcium phosphates in oral biology and medicine, Monogr. Oral Sci. 15 (1991) 1-201.
Google Scholar
[16]
S. Leeuwenburgh, P. Layrolle, F. Barre`re, J. de Bruijn, J. Schoonman, C.A. van Blitterswijk, K. de Groot, Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro, J. Biomed. Mater. Res. 56 (2001) 208-215.
DOI: 10.1002/1097-4636(200108)56:2<208::aid-jbm1085>3.0.co;2-r
Google Scholar
[17]
A. Cahyanto, M. Maruta, K. Tsuru, S. Matsuya and K, Ishikawa, Basic properties of carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous, Key Eng. Mater. 529-530 (2013) 192-196.
DOI: 10.4028/www.scientific.net/kem.529-530.192
Google Scholar
[18]
A. Cahyanto, R. Toita, K. Tsuru, K. Ishikawa, Effect of particle size on carbonate apatite cement properties consisting of calcite (or vaterite) and dicalcium phosphate anhydrous, Key Eng. Mater. 631 (2015) 128-133.
DOI: 10.4028/www.scientific.net/kem.631.128
Google Scholar
[19]
A. Cahyanto, K. Tsuru, K. Ishikawa and M. Kikuchi. Mechanical strength improvement of apatite cement using hydroxyapatite/collagen nanocomposite, Key Eng. Mater. 720 (2017) 167- 172.
DOI: 10.4028/www.scientific.net/kem.720.167
Google Scholar
[20]
A. Cahyanto, A.G. Imaniyyah, M.N. Zakaria, Z. Hasratiningsih, Mechanical strength properties of injectable carbonate apatite cement with various concentration of sodium carboxymethyl cellulose, Key Eng. Mater. 758 (2017) 56-60.
DOI: 10.4028/www.scientific.net/kem.758.56
Google Scholar
[21]
ISO/FDIS 23317. Implants for surgery-In vitro evaluation for apatite-forming ability, (2007).
Google Scholar
[22]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[23]
M.Hirota, T. Hayakawa, C. Ohkubo, M. Sato, T. Toyama, and Y. Tanaka, Bone responses to zirconia implants with a thin carbonate-containing hydroxyapatite coating using a molecular precursor method, J. Biomed. Mater. Res. Part B (2014) 014:00B.
DOI: 10.1002/jbm.b.33112
Google Scholar
[24]
E. Yoshida, T. Hayakawa, Quantitative analysis of apatite formation on titanium and zirconia in a simulated body fluid solution using the quartz crystal microbalance method, Adv. Mater. Sci. Eng, 2017 (2017) 1-9.
DOI: 10.1155/2017/7928379
Google Scholar
[25]
N. Ohashi, M. Nakamura, A. Nagai, Y. Tanaka, Y. Sekijima, K. Yamashita, Comparison of hydroxyapatite with carbonate apatite in osteoclastic cell resorptive activity, Key Eng. Mater. 361-363 (2008) 147-152.
DOI: 10.4028/www.scientific.net/kem.361-363.1039
Google Scholar