Apatite Formation on Zirconia (Y-TZP) Coated with Carbonate Apatite in Simulated Body Fluid

Article Preview

Abstract:

Abstract. Various bioactive calcium phosphates such as hydroxyapatite (HA) and carbonate apatite (CO3Ap) have been widely studied due to their biocompatibility and osteoconductivity when implanted into bone defects. CO3Ap has the ability to adapt bone structure and induce bone regeneration; so that it can be categorized as resorbable bioactive materials. CO3Ap induced much stronger response such as cell adhesion and actin ring formation to osteoclast-like cells rather than HA. The aim of this study is to evaluate the bioactivity on zirconia (Y-TZP) coated with CO3Ap using simulated body fluid (SBF). Twenty Y-TZP ZrO2 disks with a 12-mm diameter and 1-mm thickness were employed as the samples. The disks were divided into two groups which the control group without CO3Ap coating and tested group with CO3Ap coating. Disks samples are dipped into CO3Ap suspension for one minute and stored in 37°C incubator for 24 hours. The disks were soaked in SBF for 1, 4, and 7 day(s) at 36.5°C. The obtained apatite crystals were characterized by scanning electron microscopy (SEM). It was found that the apatite formation on the tested group was greater than the control group. The EDS pattern showed the presence of Ca and P on the control and tested group after SBF soaking, which indicate the apatite deposition on the disks’ surface. However, the Ca and P on the tested group was higher compared to the control group. The formation of apatite layer on the disks’ surface is bioactivity indicator of CO3Ap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-150

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gahlert, T. Gudehus, S. Eichhorn, E. Steinhauser, H. Kniha, W. Erhardt, Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs, Clin. Oral Implants Res. 18 (2007) 662–668.

DOI: 10.1111/j.1600-0501.2007.01401.x

Google Scholar

[2] Z. Ozkurt, E. Kazazoglu, Zirconia dental implants: A literature review, J. Oral Implant. 37 (2011) 367-76.

Google Scholar

[3] P.F. Manicone, P.R. Iommetti, L. Raffaelli, An overview of zirconia ceramics: Basic properties and clinical applications, J Dent. 35 (2007) 819–826.

DOI: 10.1016/j.jdent.2007.07.008

Google Scholar

[4] C. Vaquero-Aguilar, M. Jiménez-Melendo, D. Torres-Lagares, et al., Zirconia implant abutments: Microstructural analysis, Int. J. Oral Maxillofac. Implants. 27 (2012) 785–791.

Google Scholar

[5] C.L. Chang, C.S. Chen, T.C. Yeung, M.L. Hsu, Biomechanical efect of a zirconia dental implant-crown system: A three-dimensional finite element analysis, Int. J. Oral Maxillofac. Implants. 27 (2012) e49–e57.

Google Scholar

[6] G. Manzano, R.L. Herrero, J. Montero, Comparison of clinical performance of zirconia implants and titanium implants in animal models: A systematic review, Int. J. Oral Maxillofac. Implants 29 (2014) 311–320.

DOI: 10.11607/jomi.2817

Google Scholar

[7] S.W. Pyo, Y.M. Kim, C.S. Kim, I.S. Lee, J.U. Park, Bone formation on biomimetic calcium phosphate-coated and zoledronate-immobilized titanium implants in osteoporotic rat tibiae, Int. J. Oral Maxillofac. Implants 29 (2014) 478–484.

DOI: 10.11607/jomi.3423

Google Scholar

[8] D.D. Bosshardt, V. Chappuis, D. Buser, Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions, Periodontology 2000. 73 (2017) 22-40.

DOI: 10.1111/prd.12179

Google Scholar

[9] A. Wennerberg, T. Albrektsson, On implant surfaces: a review of current knowledge and opinions, Int. J. Oral Maxillofac. Implants 25 (2010) 63-74.

Google Scholar

[10] R.R. Barros, A.B. Novaes Jr, V. Papalexiou, S.L. Souza, M. Taba, D.B. Palioto, et al., Effect of biofunctionalized implant surface on osseointegration: A histomorphometric study in dogs, Braz. Dent. J. 20 (2009) 91-98.

DOI: 10.1590/s0103-64402009000200001

Google Scholar

[11] Y. Doi, T. Shibutani, Y. Moriwaki, T. Kajimoto, Sintered carbonate apatites as bioresorbable bone substitutes, J. Biomed. Mater. Res. 39 (1998) 603–610.

DOI: 10.1002/(sici)1097-4636(19980315)39:4<603::aid-jbm15>3.0.co;2-7

Google Scholar

[12] A. Cahyanto, M. Maruta, K. Tsuru, S. Matsuya and K, Ishikawa, Fabrication of bone cement that fully transforms to carbonate apatite, Dent. Mater. J. 34 (2015) 394–401.

DOI: 10.4012/dmj.2014-328

Google Scholar

[13] A. Cahyanto, K. Ishikawa, K. Tsuru, Effect of setting atmosphere on apatite cement resorption: An in vitro and in vivo study, J. Mech. Behav. Biomed. Mater. 88 (2018) 463-469.

DOI: 10.1016/j.jmbbm.2018.08.021

Google Scholar

[14] M.N. Zakaria, N.F.N. Pauziah, I.P. Sabirin, A. Cahyanto, Evaluation of carbonate apatite cement in inducing formation of reparative dentin in exposed dental pulp, Key Eng. Mater. 758 (2017) 250-254.

DOI: 10.4028/www.scientific.net/kem.758.250

Google Scholar

[15] L. Geros RZ, Calcium phosphates in oral biology and medicine, Monogr. Oral Sci. 15 (1991) 1-201.

Google Scholar

[16] S. Leeuwenburgh, P. Layrolle, F. Barre`re, J. de Bruijn, J. Schoonman, C.A. van Blitterswijk, K. de Groot, Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro, J. Biomed. Mater. Res. 56 (2001) 208-215.

DOI: 10.1002/1097-4636(200108)56:2<208::aid-jbm1085>3.0.co;2-r

Google Scholar

[17] A. Cahyanto, M. Maruta, K. Tsuru, S. Matsuya and K, Ishikawa, Basic properties of carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous, Key Eng. Mater. 529-530 (2013) 192-196.

DOI: 10.4028/www.scientific.net/kem.529-530.192

Google Scholar

[18] A. Cahyanto, R. Toita, K. Tsuru, K. Ishikawa, Effect of particle size on carbonate apatite cement properties consisting of calcite (or vaterite) and dicalcium phosphate anhydrous, Key Eng. Mater. 631 (2015) 128-133.

DOI: 10.4028/www.scientific.net/kem.631.128

Google Scholar

[19] A. Cahyanto, K. Tsuru, K. Ishikawa and M. Kikuchi. Mechanical strength improvement of apatite cement using hydroxyapatite/collagen nanocomposite, Key Eng. Mater. 720 (2017) 167- 172.

DOI: 10.4028/www.scientific.net/kem.720.167

Google Scholar

[20] A. Cahyanto, A.G. Imaniyyah, M.N. Zakaria, Z. Hasratiningsih, Mechanical strength properties of injectable carbonate apatite cement with various concentration of sodium carboxymethyl cellulose, Key Eng. Mater. 758 (2017) 56-60.

DOI: 10.4028/www.scientific.net/kem.758.56

Google Scholar

[21] ISO/FDIS 23317. Implants for surgery-In vitro evaluation for apatite-forming ability, (2007).

Google Scholar

[22] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[23] M.Hirota, T. Hayakawa, C. Ohkubo, M. Sato, T. Toyama, and Y. Tanaka, Bone responses to zirconia implants with a thin carbonate-containing hydroxyapatite coating using a molecular precursor method, J. Biomed. Mater. Res. Part B (2014) 014:00B.

DOI: 10.1002/jbm.b.33112

Google Scholar

[24] E. Yoshida, T. Hayakawa, Quantitative analysis of apatite formation on titanium and zirconia in a simulated body fluid solution using the quartz crystal microbalance method, Adv. Mater. Sci. Eng, 2017 (2017) 1-9.

DOI: 10.1155/2017/7928379

Google Scholar

[25] N. Ohashi, M. Nakamura, A. Nagai, Y. Tanaka, Y. Sekijima, K. Yamashita, Comparison of hydroxyapatite with carbonate apatite in osteoclastic cell resorptive activity, Key Eng. Mater. 361-363 (2008) 147-152.

DOI: 10.4028/www.scientific.net/kem.361-363.1039

Google Scholar