[1]
Nair LS, Laurencin CT. Nanofibers and Nanoparticles for Orthopaedic Surgery Applications. J Bone Jt Surgery-American 90 (2008) 128–31.
DOI: 10.2106/jbjs.g.01520
Google Scholar
[2]
Murphy CM, O'Brien FJ, Little DG, Schindeler A. Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater 26 (2013) 120–32.
Google Scholar
[3]
Yuliati A, Kartikasari N, Munadziroh E, Rianti D. The profile of crosslinked bovine hydroxyapatite gelatin chitosan scaffolds with 0.25% glutaraldehyde. J Int Dent Med Res. 10 (2017) 151–5.
Google Scholar
[4]
O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today 14 (2011) 88–95.
Google Scholar
[5]
Tripathi G, Basu B. A porous hydroxyapatite scaffold for bone tissue engineering: Physico mechanical and biological evaluations. Ceram Int. 38 (2012) 341–9.
DOI: 10.1016/j.ceramint.2011.07.012
Google Scholar
[6]
Park J-Y, Yang C, Jung I-H, Lim H-C, Lee J-S, Jung U-W, et al. Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds. Biomater Res 19 (2015) 1–10.
DOI: 10.1186/s40824-015-0027-1
Google Scholar
[7]
Salim S, Ariani MD. In vitro and in vivo evaluation of carbonate apatite-collagen scaffolds with some cytokines for bone tissue engineering. J Indian Prosthodont Soc. 15 (2015) 349–55.
DOI: 10.4103/0972-4052.171821
Google Scholar
[8]
Dewi AH, Triawan A. The Newly Bone Formation with Carbonate Apatite-Chitosan Bone Substitute in the Rat Tibia. Indones J Dent Res. 1 (2011) 54–60.
DOI: 10.22146/theindjdentres.10065
Google Scholar
[9]
Maji K, Dasgupta S, Kundu B, Bissoyi A. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. J Biomater Sci Polym Ed. 26 (2015) 1190–209.
DOI: 10.1080/09205063.2015.1082809
Google Scholar
[10]
Kim M, Evans D. Tissue Engineering : The Future of Stem Cells. In: Ashammaki N, Reis R, editors. Top. Tissue Eng. 2 (2005) 1–22.
Google Scholar
[11]
Gleeson JP, Plunkett NA, O'Brien FJ. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mater20 (2010) 18–30.
DOI: 10.22203/ecm.v020a18
Google Scholar
[12]
Chen G, Li W, Zhao B, Sun K. A Novel Biphasic Bone Scaffold: β-Calcium Phosphate and Amorphous Calcium Polyphosphate. J Am Ceram Soc. 92 (2009) 945–8.
DOI: 10.1111/j.1551-2916.2009.02971.x
Google Scholar
[13]
Pace A, Valenza A, Vitale A. Mechanical characterization of human cancellous bone tissue by static compression test. In: Alessandro R, Brucato V, Rimondini L, Spadaro G, editors. I Mater. Biocompat. Per La Med. First, Mantova, Italy: Universitas StudiorumS.r.l., 2014, p.15–8.
Google Scholar
[14]
Thein-Han WW, Saikhun J, Pholpramoo C, Misra RDK, Kitiyanant Y. Chitosan–gelatin scaffolds for tissue engineering: Physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP–buffalo embryonic stem cells. Acta Biomater. 5 (2009) 3453–66.
DOI: 10.1016/j.actbio.2009.05.012
Google Scholar
[15]
Isikli C, Hasirci V, Hasirci N. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regen Med. 6 (2012) 135–43.
DOI: 10.1002/term.406
Google Scholar
[16]
Ariani MD, Matsuura A, Hirata I, Kubo T, Kato K, Akagawa Y. New development of carbonate apatite-chitosan scaffold based on lyophilization technique for bone tissue engineering. Dent Mater J. 3 (2013):317–25.
DOI: 10.4012/dmj.2012-257
Google Scholar
[17]
Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30 (2012) 546–54.
DOI: 10.1016/j.tibtech.2012.07.005
Google Scholar
[18]
Matsuura A, Kubo T, Doi K, Hayashi K, Morita K, Yokota R, et al. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Dent Mater J. 28 (2009) 234–42.
DOI: 10.4012/dmj.28.234
Google Scholar
[19]
Bakunova NV, Komlev VS, Fedotov Ay, Fadeeva IV, Smirov VV, Shvorneva LI, Gurin AN Barinov SM. A method of fabrication of porous carbonated hydroxyapatite scaffolds for bone tissue engineering. Powder Mettalurgy Progress Journal 8 (2008) 336–42.
Google Scholar
[20]
Hannink G, Arts JJC. Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration? Injury 42 (2011): S22–5.
DOI: 10.1016/j.injury.2011.06.008
Google Scholar
[21]
Aprilisna M, Ramadhany CA, Sunendar B, Widodo HB. Karakteristik dan Aktivitas Antibakteri Scaffold Membran Cangkang Telur yang Diaktivasi Karbonat Apatit. Maj Kedokt Gigi Indones. 1 (2015) 59.
DOI: 10.22146/majkedgiind.8993
Google Scholar
[22]
Ge J, Guo L, Wang S, Zhang Y, Cai T, Zhao RCH, et al. The Size of Mesenchymal Stem Cells is a Significant Cause of Vascular Obstructions and Stroke. Stem Cell Rev Reports 10 (2014) 295–303.
DOI: 10.1007/s12015-013-9492-x
Google Scholar
[23]
Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28 (2007) 45–54.
DOI: 10.1016/j.biomaterials.2006.08.021
Google Scholar