[1]
J. Chevalier, What future for zirconia as a biomaterial?, Biomaterials, 27 (2006) 535-543.
DOI: 10.1016/j.biomaterials.2005.07.034
Google Scholar
[2]
Y. Abe, T. Kokubo, T. Yamamuro, Apatite coating on ceramics, metals and polymers utilizing a biological process, J. Mater. Sci. 1 (1990) 233-238.
DOI: 10.1007/bf00701082
Google Scholar
[3]
M. Bohner, L .Galea, N. Doebelin, Calcium phosphate bone graft substitutes: Failures and hopes, J. Eur. Ceram. Soc. 32 (2012) 2663-2671.
DOI: 10.1016/j.jeurceramsoc.2012.02.028
Google Scholar
[4]
T. Yao, M. Hibino, S. Yamaguchi and H. Okada, US Patent, 8,178,066 (2012), Japanese Patent 5,261,712 (2013).
Google Scholar
[5]
T. Yao, M. Hibino, T. Yabutsuka, US Patent, 8,512,732 (2013), Japanese Patent 5,252,399 (2013).
Google Scholar
[6]
T. Yabutsuka, H. Mizutani, S. Takai, T. Yao, Fabrication of Bioactive Co-Cr-Mo-W Alloy by Using Doubled Sandblasting Process and Apatite Nuclei Treatment, Trans. Mat. Res. Soc. Japan 43 (2018) 143-147.
DOI: 10.14723/tmrsj.43.143
Google Scholar
[7]
T. Yabutsuka, R. Karashima, S. Takai, T. Yao, Effect of Doubled Sandblasting Process and Basic Simulated Body Fluid Treatment on Fabrication of Bioactive Stainless Steels, Materials 11 (2018) 1334.
DOI: 10.3390/ma11081334
Google Scholar
[8]
T. Kokubo, H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials 27 (2006) 2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[9]
T. Yao, T. Yabutsuka, Japanese Patent, 6,071,895 (2017).
Google Scholar
[10]
J. Chevalier, L. Gremillard, A. V. Virkar, D. R. Clarke, The Tetragonal‐Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, J. Am. Ceram. Soc. 92 (2009) 1901-1920.
DOI: 10.1111/j.1551-2916.2009.03278.x
Google Scholar
[11]
T. Yabutsuka , K. Fukushima , T. Hiruta , S. Takai , T. Yao, Fabrication of Bioactive Fiber-reinforced PEEK and MXD6 by Incorporation of Precursor of Apatite, J. Biomed. Mater. Res. B Appl. Biomater. 106 (2018) 2254-2265.
DOI: 10.1002/jbm.b.34025
Google Scholar