[1]
A. Kataruka, K. Mendu, O. Okeoghene, J. Puthuvelil, and A.-T. Akono, Microscopic assessment of bone toughness using scratch tests, Bone Rep. 6 (2017) 17–25.
DOI: 10.1016/j.bonr.2016.12.001
Google Scholar
[2]
S. Bose, G. Fielding, S. Tarafder, and A. Bandyopadhyay, Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics, Trends Biotechnol. 31 10 (2013) 594–605.
DOI: 10.1016/j.tibtech.2013.06.005
Google Scholar
[3]
E. Boanini, M. Gazzano, and A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature, Acta Biomater. 6 6 (2010) 1882–1894.
DOI: 10.1016/j.actbio.2009.12.041
Google Scholar
[4]
S. Dasgupta, S. S. Banerjee, A. Bandyopadhyay, and S. Bose, Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein, Langmuir. 26 7 (2010) 4958–4964.
DOI: 10.1021/la903617e
Google Scholar
[5]
S. H. Min, H. H. Jin, H. Y. Park, I. M. Park, H. C. Park, and S. Y. Yoon, Preparation of porous hydroxyapatite scaffolds for bone tissue engineering, Mater. Sci. Forum. 510–511 (2006) 754–757.
DOI: 10.4028/www.scientific.net/msf.510-511.754
Google Scholar
[6]
L. T. Bang, B. D. Long, and R. Othman, Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: Synthesis, mechanical properties, and solubility evaluations, Sci. World J. 2014 (2014).
DOI: 10.1155/2014/969876
Google Scholar
[7]
R. Othman, Z. Mustafa, C. Loon, and A. Noor, Effect of calcium precursors and pH on the Precipitation of carbonated hydroxyapatite, Procedia Chem. 19 (2016) 539–545.
DOI: 10.1016/j.proche.2016.03.050
Google Scholar
[8]
D. Bellucci, A. Sola, and V. Cannillo, A revised replication method for bioceramic scaffolds, Bioceram. Dev. Appl. 1 (2011) 1–8.
DOI: 10.4303/bda/d110401
Google Scholar
[9]
Y. Liu, J. Lim, and S.H. Teoh, Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering, Biotechnol. Adv. 31 5 (2013) 688–705.
DOI: 10.1016/j.biotechadv.2012.10.003
Google Scholar
[10]
S. Tajbakhsh and F. Hajiali, A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering, Mater. Sci. Eng. C. 70 (2016) 897–912.
DOI: 10.1016/j.msec.2016.09.008
Google Scholar
[11]
A.C.B.M. Fook, A.H. Aparecida, T.B. Fidéles, R.C. Costa, and M.V.L. Fook, Porous hydroxyapatite scaffolds by polymer sponge method, Key Eng. Mater. 396–398 (2009) 703–706.
DOI: 10.4028/www.scientific.net/kem.396-398.703
Google Scholar
[12]
N. Monmaturapoj and C. Yatongchai, Influence of preparation method on hydroxyapatite porous scaffolds, Bull. Mater. Sci. 34 7 (2011) 1733–1737.
DOI: 10.1007/s12034-011-0384-x
Google Scholar
[13]
M. Bricha, Y. Belmamouni, E.M. Essassi, J.M.F. Ferreira, and K. El Mabrouk, Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanopowders, J. Nanosci. Nanotechnol. 12 10 (2012) 8042–8049.
DOI: 10.1166/jnn.2012.6664
Google Scholar
[14]
Y.M. Baba Ismail, I. Wimpenny, O. Bretcanu, K. Dalgarno, and A.J. El Haj, Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications, J. Biomed. Mater. Res. - Part A. (2017) 1–11.
DOI: 10.1002/jbm.a.36038
Google Scholar
[15]
E.S. Kovaleva, M.P. Shabanov, V.I. Putlayev, Y.Y. Filippov, Y.D. Tretyakov, and V.K. Ivanov, Carbonated hydroxyapatite nanopowders for preparation of bioresorbable materials, Materwiss. Werksttech. 39 11 (2008) 822–829.
DOI: 10.1002/mawe.200800383
Google Scholar
[16]
E. Landi, G. Celotti, G. Logroscino, and A. Tampieri, Carbonated hydroxyapatite as bone substitute, J. Eur. Ceram. Soc. 23 15 (2003) 2931–2937.
DOI: 10.1016/s0955-2219(03)00304-2
Google Scholar
[17]
Y.M. Baba Ismail and A.F. Mohd Noor, Effect of a novel approach of sintering on physical properties of carbonated hydroxyapatite, J. Mater. Sci. Eng. B. 1 2 (2011) 157–163.
Google Scholar
[18]
J.P. Lafon, E. Champion, and D. Bernache-assollant, Processing of AB-type carbonated hydroxyapatite ceramics with controlled composition, J. Eur. Ceram. Soc. 28 (2008) 139–147.
DOI: 10.1016/j.jeurceramsoc.2007.06.009
Google Scholar
[19]
Y.J. Guo, T. Long, W. Chen, C.Q. Ning, Z.A. Zhu, and Y.P. Guo, Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres, Mater. Sci. Eng. C. 33 7(2013) 3583–3591.
DOI: 10.1016/j.msec.2013.04.021
Google Scholar