Fabrication of Low Temperature Carbonated Hydroxyapatite Porous Scaffolds for Bone Tissue Engineering Applications

Article Preview

Abstract:

Three-dimensional (3D) porous carbonated hydroxyapatite (CHA) scaffolds were successfully prepared using polyurethane (PU) replication technique. Two sets of porous scaffolds were prepared using as-synthesized and as-calcined CHA powder as the main component of the slurry. The effect of the condition of starting material was investigated in terms of structure, phase purity, crystallinity and morphology of the fabricated porous scaffolds. Regardless of the condition of starting material used, the porous scaffolds fabricated was single phase B-type CHA and free of secondary phases. Interestingly, scaffolds made of as-calcined CHA powder (SC scaffolds) showed a smoother surface and more solidified struts when compared to as-synthesized CHA powder (SA scaffolds). This is attributed to the state of semi-crystalline phase of the as-calcined powder being amorphous phase. SC scaffold was found to be better scaffold with respect to handling, compaction strength and microstructure with better strut properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-172

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kataruka, K. Mendu, O. Okeoghene, J. Puthuvelil, and A.-T. Akono, Microscopic assessment of bone toughness using scratch tests, Bone Rep. 6 (2017) 17–25.

DOI: 10.1016/j.bonr.2016.12.001

Google Scholar

[2] S. Bose, G. Fielding, S. Tarafder, and A. Bandyopadhyay, Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics, Trends Biotechnol. 31 10 (2013) 594–605.

DOI: 10.1016/j.tibtech.2013.06.005

Google Scholar

[3] E. Boanini, M. Gazzano, and A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature, Acta Biomater. 6 6 (2010) 1882–1894.

DOI: 10.1016/j.actbio.2009.12.041

Google Scholar

[4] S. Dasgupta, S. S. Banerjee, A. Bandyopadhyay, and S. Bose, Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein, Langmuir. 26 7 (2010) 4958–4964.

DOI: 10.1021/la903617e

Google Scholar

[5] S. H. Min, H. H. Jin, H. Y. Park, I. M. Park, H. C. Park, and S. Y. Yoon, Preparation of porous hydroxyapatite scaffolds for bone tissue engineering, Mater. Sci. Forum. 510–511 (2006) 754–757.

DOI: 10.4028/www.scientific.net/msf.510-511.754

Google Scholar

[6] L. T. Bang, B. D. Long, and R. Othman, Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: Synthesis, mechanical properties, and solubility evaluations, Sci. World J. 2014 (2014).

DOI: 10.1155/2014/969876

Google Scholar

[7] R. Othman, Z. Mustafa, C. Loon, and A. Noor, Effect of calcium precursors and pH on the Precipitation of carbonated hydroxyapatite, Procedia Chem. 19 (2016) 539–545.

DOI: 10.1016/j.proche.2016.03.050

Google Scholar

[8] D. Bellucci, A. Sola, and V. Cannillo, A revised replication method for bioceramic scaffolds, Bioceram. Dev. Appl. 1 (2011) 1–8.

DOI: 10.4303/bda/d110401

Google Scholar

[9] Y. Liu, J. Lim, and S.H. Teoh, Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering, Biotechnol. Adv. 31 5 (2013) 688–705.

DOI: 10.1016/j.biotechadv.2012.10.003

Google Scholar

[10] S. Tajbakhsh and F. Hajiali, A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering, Mater. Sci. Eng. C. 70 (2016) 897–912.

DOI: 10.1016/j.msec.2016.09.008

Google Scholar

[11] A.C.B.M. Fook, A.H. Aparecida, T.B. Fidéles, R.C. Costa, and M.V.L. Fook, Porous hydroxyapatite scaffolds by polymer sponge method, Key Eng. Mater. 396–398 (2009) 703–706.

DOI: 10.4028/www.scientific.net/kem.396-398.703

Google Scholar

[12] N. Monmaturapoj and C. Yatongchai, Influence of preparation method on hydroxyapatite porous scaffolds, Bull. Mater. Sci. 34 7 (2011) 1733–1737.

DOI: 10.1007/s12034-011-0384-x

Google Scholar

[13] M. Bricha, Y. Belmamouni, E.M. Essassi, J.M.F. Ferreira, and K. El Mabrouk, Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanopowders, J. Nanosci. Nanotechnol. 12 10 (2012) 8042–8049.

DOI: 10.1166/jnn.2012.6664

Google Scholar

[14] Y.M. Baba Ismail, I. Wimpenny, O. Bretcanu, K. Dalgarno, and A.J. El Haj, Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications, J. Biomed. Mater. Res. - Part A. (2017) 1–11.

DOI: 10.1002/jbm.a.36038

Google Scholar

[15] E.S. Kovaleva, M.P. Shabanov, V.I. Putlayev, Y.Y. Filippov, Y.D. Tretyakov, and V.K. Ivanov, Carbonated hydroxyapatite nanopowders for preparation of bioresorbable materials, Materwiss. Werksttech. 39 11 (2008) 822–829.

DOI: 10.1002/mawe.200800383

Google Scholar

[16] E. Landi, G. Celotti, G. Logroscino, and A. Tampieri, Carbonated hydroxyapatite as bone substitute, J. Eur. Ceram. Soc. 23 15 (2003) 2931–2937.

DOI: 10.1016/s0955-2219(03)00304-2

Google Scholar

[17] Y.M. Baba Ismail and A.F. Mohd Noor, Effect of a novel approach of sintering on physical properties of carbonated hydroxyapatite, J. Mater. Sci. Eng. B. 1 2 (2011) 157–163.

Google Scholar

[18] J.P. Lafon, E. Champion, and D. Bernache-assollant, Processing of AB-type carbonated hydroxyapatite ceramics with controlled composition, J. Eur. Ceram. Soc. 28 (2008) 139–147.

DOI: 10.1016/j.jeurceramsoc.2007.06.009

Google Scholar

[19] Y.J. Guo, T. Long, W. Chen, C.Q. Ning, Z.A. Zhu, and Y.P. Guo, Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres, Mater. Sci. Eng. C. 33 7(2013) 3583–3591.

DOI: 10.1016/j.msec.2013.04.021

Google Scholar