[1]
R.B. Osman, and M.V. Swain, A critical review of dental implant materials with an emphasis on titanium versus zirconia, Materials (Basel). 8 (2015) 932–958.
DOI: 10.3390/ma8030932
Google Scholar
[2]
Z. Özkurt, and E. Kazazoğlu, Zirconia dental implants: a literature review, J. Oral Implantol. 37 (2011) 367–376.
DOI: 10.1563/aaid-joi-d-09-00079
Google Scholar
[3]
C.E. Misch, H.A. Abbas, Contemporary Implant Dentistry, 3rd ed., Mosby Elsevier Missouri, (2008).
Google Scholar
[4]
Y. Doi, H. Iwanaga, T. Shibutani. T, Y. Moriwaki, and Y. Iwayama, Osteoclastic responses to various calcium phosphates in cell cultures, J. Biomed. Mater. Res. 47 (1999) 424–433.
DOI: 10.1002/(sici)1097-4636(19991205)47:3<424::aid-jbm19>3.0.co;2-0
Google Scholar
[5]
P. Avés, et al., Comparative study of hydroxyapatite coatings obtained by sol-gel and electrophoresis on titanium sheets, Matéria (Rio de Janeiro). 12 (2007) 156–163.
DOI: 10.1590/s1517-70762007000100020
Google Scholar
[6]
M. Hirota, T. Hayakawa, C. Ohkubo, M. Sato, T. Toyama, and Y. Tanaka, Bone responses to zirconia implants with a thin carbonate-containing hydroxyapatite coating using a molecular precursor method, J. Biomed. Mater. Res. Part B (2014) 014:00B.
DOI: 10.1002/jbm.b.33112
Google Scholar
[7]
D. Peredni, and L.J Gauckler. Thin film deposition using spray pyrolysis, J. Electroceram. 14 (2005) 103-111.
DOI: 10.1007/s10832-005-0870-x
Google Scholar
[8]
A.K Riau, D. Modal, M. Setiawan, A. Palaniappan, G.H.F Yam, B Liedberg, S.S. Venkatraman, and J. S. Mehta. Functionalization of polymeric surface with bioceramic nanoparticles via novel, non-thermal dip coating method. ACS Appl. Mater. Interfaces. Downloaded from http://pubs.acs.org on October 1 (2018).
DOI: 10.1021/acsami.6b12371
Google Scholar
[9]
Hasanuzzaman, Sintering and characterization of nano sized yttria stabilized zirconia. A thesis for master engineering. School of Mechanical and Manufacturing Engineering. University of Dublin City, 2006, pp.28-29.
Google Scholar
[10]
A. Cahyanto, M. Maruta, K. Tsuru, Fabrication of bone cement that fully transforms to carbonate apatite, Dent. Mater. J. 34-3 (2015) 394–401.
DOI: 10.4012/dmj.2014-328
Google Scholar
[11]
A. Cahyanto, M. Maruta, K. Tsuru, et al., Basic Properties of carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous. Key Eng. Mater. 529-530 (2012) 192-196.
DOI: 10.4028/www.scientific.net/kem.529-530.192
Google Scholar
[12]
B. Mavis, and C. Tas, Dip coating of calcium hydroxyapatite on Ti-6Al-4V substrates, J. Am. Ceram. Soc. 83-4 (2000) 989–991.
DOI: 10.1111/j.1151-2916.2000.tb01314.x
Google Scholar
[13]
B. R. Patterson, and J. A. Griffin, Effect of particle size distribution on sintering of tungsten, modem development in powder metallurgy, Metal Powder Industries Federation, 15 (1985) 279-288.
Google Scholar
[14]
A. Cahyanto, R. Toita, K. Tsuru, K. Ishikawa, Effect of particle size on carbonate apatite cement properties consisting of calcite (or vaterite) and dicalcium phosphate anhydrous, Key Eng. Mater. 631 (2015) 128-134.
DOI: 10.4028/www.scientific.net/kem.631.128
Google Scholar
[15]
C. Piconi, G. Maccauro, Zirconia as ceramic biomaterial, Biomaterials. 20 (1999) 1-25.
DOI: 10.1016/s0142-9612(98)00010-6
Google Scholar
[16]
ISO Standard 13356:2008. Implants for surgery – materials based on yttria-stabilized tetragonal zirconia (Y-TZP).
DOI: 10.3403/30276374
Google Scholar
[17]
V. Turp, D. Sen, G. Goller, M. Ozcan, Evaluation of air particle abrasion of Y-TZP with different particles using microstructural analysis, Aus. Dent. J. 58 (2013) 183-191.
DOI: 10.1111/adj.12065
Google Scholar
[18]
E. Landi, A. Tampieri, G. Celotti, L. Vichi, M. Sandri, Influence of synthesis and sintering parameters on the characteristics of carbonate apatite, Biomaterials. 25 (2004) 1763-1770.
DOI: 10.1016/j.biomaterials.2003.08.026
Google Scholar