[1]
M. Quirynen, M. DeSoete, D. van Steenberghe, Infectious risks for oral implants: A review of the literature, Clinical Oral Implants Research 13 (2002) 1-19.
DOI: 10.1034/j.1600-0501.2002.130101.x
Google Scholar
[2]
A. Leonhardt, G. Dahlen, S. Renvert, Five year clinical, microbiological, and radiological outcome following treatment of peri-implantitis in man, Journal of Periodontology 74 (2003) 1415-1422.
DOI: 10.1902/jop.2003.74.10.1415
Google Scholar
[3]
F. Schwarz, J. Derks, A. Monje, H.L. Wang, Peri-implantitis, Journal of Clinical Periodontology 45 (2018) S246-S256.
DOI: 10.1111/jcpe.12954
Google Scholar
[4]
S. Matarasso, G. Quaremba, F. Coraggio, E. Vaia, C. Cafiero, N. P. Lang, Maintenance of implants: An in vitro study of titanium implant surface modifications subsequent to the application of different prophylaxis procedures, Clinical Oral Implants Research 7 (1996) 64-72.
DOI: 10.1034/j.1600-0501.1996.070108.x
Google Scholar
[5]
G. R. Persson, E. Samuelsson, C. Lindahl, S. Renvert, Mechanical non-surgical treatment of peri-implantitis: A single-blinded randomized longitudinal clinical study. II. Microbiological results, Journal of Clinical Periodontology 37 (2010) 563-573.
DOI: 10.1111/j.1600-051x.2010.01561.x
Google Scholar
[6]
D. Schar, C. A. Ramseier, S. Eick, N. B. Arweiler, A. Sculean, G. E. Salvi, Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: Six-month outcomes of a prospective randomized clinical trial, Clinical Oral Implants Research 24 (2013) 104-110.
DOI: 10.1111/j.1600-0501.2012.02494.x
Google Scholar
[7]
E. Figuero, F. Graziani, I. Sanz, D. Herrera, M. Sanz, Management of peri-implant mucositis and peri-implantitis, Periodontology 66 (2014) 255-273.
DOI: 10.1111/prd.12049
Google Scholar
[8]
M. Madi, A. S. Alagl, The effect of different implant surfaces and photodynamic therapy on periodontopathic bacteria using TaqMan PCR assay following peri-implantitis treatment in dog model, BioMed Research International 2018 (2018) 1-7.
DOI: 10.1155/2018/7570105
Google Scholar
[9]
S. Renvert, E. Samuelsson, C. Lindahl, G. R. Persson, Mechanical non-surgical treatment of peri-implantitis: A double-blind randomized longitudinal clinical study. I: Clinical results, Journal of Clinical Periodontology 36 (2009) 604-609.
DOI: 10.1111/j.1600-051x.2009.01421.x
Google Scholar
[10]
J. M. Stein, C. Hammacher, S. S. Michael, Combination of ultrasonic decontamination, soft tissue curettage, and submucosal air polishing with povidone-iodine application for non-surgical therapy of peri-implantitis: 12 Month clinical outcomes, Journal of Periodontology 89 (2017) 139-147.
DOI: 10.26226/morressier.5ac3831e2afeeb00097a3e72
Google Scholar
[11]
A. M. Roos-Jansaker, U. S. Almhojd, H. Jansson, Treatment of peri-implantitis: Clinical outcome of chloramine as an adjunctive to non-surgical therapy. A randomized clinical trial, Clinical Oral Implants Research 28 (2017), 43-48.
DOI: 10.1111/clr.12612
Google Scholar
[12]
C. S. Tastepe, R. van Waas, Y. Liu, D. Wismeijer, Air powder abrasive treatment as an implant surface cleaning method: A literature review, International Journal of Oral and Maxillofacial Implants 27 (2012) 1461-1467.
Google Scholar
[13]
G. John, N. Sahm, J. Becker, F. Schwarz, Nonsurgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine. Twelve-month follow-up of a prospective, randomized, controlled clinical study, Clinical Oral Investigations 19 (2015) 1807-1814.
DOI: 10.1007/s00784-015-1406-7
Google Scholar
[14]
M. Htet, M. Madi, O. Zakaria, T. Miyahara, W. Xin, Z. Lin, K. Aoki, S. Kasugai, Decontamination of anodized implant surface with different modalities for peri-implantitis treatment: Lasers and mechanical debridement with citric acid, Journal of Periodontology 87 (2016) 953-961.
DOI: 10.1902/jop.2016.150615
Google Scholar
[15]
K. M. Menezes, A. N. Fernandes-Costa, R. D. Silva-Neto, P. S. Calderon, B. C. Gurgel, Efficacy of 0.12% chlorhexidine gluconate for non-surgical treatment of peri-implant mucositis, Journal of Periodontology 87 (2016) 1305-1313.
DOI: 10.1902/jop.2016.160144
Google Scholar
[16]
J. C. Wohlfahrt, A. M. Aass, H. J. Ronold, S. P. Lyngstadaas, Micro CT and human histological analysis of a peri-implant osseous defect grafted with porous titanium granules: A case report, International Journal of Oral and Maxillofacial Implants 26 (2011) 9-14.
DOI: 10.1111/j.1600-0501.2009.01813.x
Google Scholar
[17]
M. Gosau, S. Hahnel, F. Schwarz, T. Gerlach, T. E. Reichert, R. Burgers. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm, Clinical Oral Implants Research 21 (2010) 866-872.
DOI: 10.1111/j.1600-0501.2009.01908.x
Google Scholar
[18]
L. G. Persson, T. Berglundh, L. Sennerby, J. Lindhe, Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in dog, Clinical Oral Implants Research 12 (2001) 595-603.
DOI: 10.1034/j.1600-0501.2001.120607.x
Google Scholar
[19]
J. X. Lu, M. Descamps, J. Dejou, G. Koubi, P. Hardouin, J. Lemaitre, J. P. Proust, The biodegradation mechanism of calcium phosphate biomaterials in bone, Journal of Biomedical Materials Research 63 (2002) 408-412.
DOI: 10.1002/jbm.10259
Google Scholar
[20]
J. E. Schroeder, R. Mosheiff, Tissue engineering approaches for bone repair: Concepts and evidence, Injury 42 (2011) 609-613.
DOI: 10.1016/j.injury.2011.03.029
Google Scholar
[21]
G. E. J. Poinern, R. K. Brundavanam, D. Fawcett, Nanometre scale hydroxyapatite ceramics for bone tissue engineering, American Journal of Biomedical Engineering 3 (2013) 148-168.
Google Scholar
[22]
N. L D'Elia, C. Mathieu, C. D. Hoemann, J. A. Laiuppa, G. E. Santillan, P. V. Messina, Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructure, Nanoscale 7 (2015) 18751-18762.
DOI: 10.1039/c5nr04850h
Google Scholar
[23]
A. Stoch, W. Jastrzebski, E. Dlugon, W. Lejda, B. Trybalska, G. J. Scoch, A. Adamczyk, Sol-gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V, Journal of Molecular Structure 744 (2005) 633-640.
DOI: 10.1016/j.molstruc.2004.10.080
Google Scholar
[24]
T. Hayami, S. Hontsu, Y. Higuchi, M. Kusunoki, H. Nishikawa, Osteoconduction of a stoichiometric and bovine hydroxyapatite bilayer-coated implant, Clinical Oral Implants Research 22 (2011) 774-776.
DOI: 10.1111/j.1600-0501.2010.02057.x
Google Scholar
[25]
Z. Strnad, J. Strnad, C. Povysil, K. Urban, Effect of plasma-sprayed hydroxyapatite coating on the osteoconductivity of commercially pure titanium implants, International Journal of Oral and Maxillofacial Implants 15 (2000) 483-490.
Google Scholar
[26]
E. Yamamoto, N. Kato, A. Isai, H. Nishikawa, Y. Hashimoto, K. Yoshikawa, S. Hontsu, A novel treatment for dentine cavities with intraoral laser ablation method using an Er:YAG laser, Key Engineering Materials 631 (2015) 262-266.
DOI: 10.4028/www.scientific.net/kem.631.262
Google Scholar
[27]
T. Furumoto, T. Ueda, A. Kasai, A. Hosokawa, Surface temperature during cavity preparation on human tooth by Er:YAG laser irradiation, Manufacturing Technology 60 (2011) 555-558.
DOI: 10.1016/j.cirp.2011.03.065
Google Scholar
[28]
W. J. Dunn, J. T. Davis, A. C. Bush, Shear bond strength and SEM evaluation of composite bonded to Er:YAG laser-prepared dentin and enamel, Dental Materials 21 (2005) 616-624.
DOI: 10.1016/j.dental.2004.11.003
Google Scholar
[29]
C. Camerlingo, M. Lepore, G. M. Gaeta, R. Riccio, C. Riccio, A. DeRosa, M. DeRosa, Er:YAG laser treatments on dentin surface: Micro-Raman spectroscopy and SEM analysis, Journal of Dentistry 32 (2004) 399-405.
DOI: 10.1364/bio.2004.thf10
Google Scholar
[30]
E. Yamamoto, N. Kato, K. Yoshikawa, K. Yasuo, K. Yamamoto, S. Hontsu, Adhesion properties of an apatite film deposited on dentine using Er:YAG laser ablation method, Key Engineering Materials 696 (2106) 69-73.
DOI: 10.4028/www.scientific.net/kem.696.69
Google Scholar
[31]
E. Yamamoto, N. Kato, Y. Hatoko, S. Hontsu, Optimization of humid conditions using an ultrasonic nebulizer for the fabrication of hydroxyapatite film with the Er:YAG laser deposition method, Key Engineering Materials 720 (2017) 268-274.
DOI: 10.4028/www.scientific.net/kem.720.269
Google Scholar
[32]
K. Ozeki, T. Yuhta, H. Aoki, I. Nishimura, Y Fukui, Push-out strength of hydroxyapatite coated by sputtering technique in bone, Bio-Medical Materials and Engineering 11 (2001) 63-68.
Google Scholar
[33]
J. Hieda, M. Niinomi, M. Nakai, K. Cho, T. Gozawa, H. Katsui, R. Tu, T. Goto, Enhancement of adhesive strength of hydroxyapatite films on Ti-29Nb-13Ta-4.6Zr by surface morphology control, Journal of Mechanical Behavior of Biomedical Materials 18 (2013) 232-239.
DOI: 10.1016/j.jmbbm.2012.11.013
Google Scholar
[34]
P. Valderrama, J. A. Blansett, M. G. Gonzalez, M. G. Cantu, T. G. Wilson, Detoxification of implant surfaces affected by peri-implant disease: An overview of non-surgical methods, The Open Dentistry Journal 8 (2014) 77-84.
DOI: 10.2174/1874210601408010077
Google Scholar
[35]
N. Mahato, X. Wu, L. Wang, Management of peri-implantitis: A systematic review 2010-2015, SpringerPlus 5 (2016) 1-9.
DOI: 10.1186/s40064-016-1735-2
Google Scholar