[1]
K. Uemura, A. Kanamori, K. Aoto, M. Yamazaki, M. Sakane, Novel unidirectional porous hydroxyapatite used as a bone substitute for open wedge high tibial osteotomy, J. Mater. Sci. Mater. Med. 25 (2014) 2541-2547.
DOI: 10.1007/s10856-014-5266-5
Google Scholar
[2]
R. Stefini, B. Zanotti, A. Nataloni, R. Martinetti, M. Scafuto, M. Colasurdo, A. Tampieri, The efficacy of custom-made porous hydroxyapatite prostheses for cranioplasty: evaluation of postmarketing data on 2697 patients, J. Appl. Biomater. Funct. Mater. 13 (2015) e136-44.
DOI: 10.5301/jabfm.5000211
Google Scholar
[3]
B. Zanotti, A. Verlicchi, S. Indiani, S. A. Scarparo, N. Zingaretti, P. C. Parodi, Spontaneous fractures in custom-made porous hydroxyapatite cranioplasty implants: is fragility the only culprit?, Acta Neurochir. (Wien). 157 (2015) 517-523.
DOI: 10.1007/s00701-014-2319-y
Google Scholar
[4]
T. Kasai, K. Sato, Y. Kanematsu, M. Shikimori, N. Kanematsu, Y. Doi,Bone tissue engineering using porous carbonate apatite and bone marrow cells, J. Craniofac. Surg. 21 (2010) 473-478.
DOI: 10.1097/scs.0b013e3181cfea6d
Google Scholar
[5]
X. Wang, J. Li, R. Hu, H. Kou, Mechanical properties and porestructure deformation behaviour of biomedical porous titanium, Trans. Nonferrous Met. Soc. China. 25 (2015) 1543–1550.
DOI: 10.1016/s1003-6326(15)63756-6
Google Scholar
[6]
S. Panzavolta, P. Torricelli, S. Amadori, A. Parrilli, K. Rubini, E. della Bella, M. Fini, A. Bigi, 3D interconnected porous biomimetic scaffolds: In vitro cell response, J. Biomed. Mater. Res. A. 101 (2013) 3560-3570.
DOI: 10.1002/jbm.a.34662
Google Scholar
[7]
A. Aarvold, J.O. Smith, E.R. Tayton, S.A. Lanham, J.B. Chaudhur, I.G. Turner, R.O. Oreffo, The effect of porosity of a biphasic ceramic scaffold on human skeletal stem cell growth and differentiation in vivo, J. Biomed. Mater. Res. A. 101 (2013) 3431-3437.
DOI: 10.1002/jbm.a.34646
Google Scholar
[8]
P. Kasten, I. Beyen, P. Niemeyer, R. Luginbühl, M. Bohner, W. Richter, Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study, Acta Biomater. 4 (2008) 1904-1915.
DOI: 10.1016/j.actbio.2008.05.017
Google Scholar
[9]
S. Padilla, J. Román, M. Vallet-Regí, Synthesis of porous hydroxyapatites by combination of gelcasting and foams burn out methods, J. Mater. Sci. Mater. Med. 13 (2002) 1193-1197.
Google Scholar
[10]
J.I. González Ocampo, D.M. Escobar Sierra, C.P. Ossa Orozco, Porous bodies of hydroxyapatite produced by a combination of the gel-casting and polymer sponge methods, J. Adv. Res. 7 (2016) 297-304.
DOI: 10.1016/j.jare.2015.06.006
Google Scholar
[11]
H. R. Ramay, M. Zhang, Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods, Biomaterials. 24 (2003) 3293-3302.
DOI: 10.1016/s0142-9612(03)00171-6
Google Scholar
[12]
H. Yoshikawa, N. Tamai, T.Murase, A.Myoui, Interconnected porous hydroxyapatite ceramics for bone tissue engineering, J. R. Soc. Interface 6 (2009) S341-S348.
DOI: 10.1098/rsif.2008.0425.focus
Google Scholar
[13]
I. Sopyana, J. Kaur, Preparation and characterization of porous hydroxyapatite through polymeric sponge method, Ceram. Int. 35 (2009) 3161-3168.
DOI: 10.1016/j.ceramint.2009.05.012
Google Scholar
[14]
S.lim, S. Chun, D. Yang, S. Kim, Comparison study of porous calcium phosphate blocks prepared by piston and screw type extruders for bone scaffold, Tissue Eng. Regen. Med. 9 (2012) 51.
DOI: 10.1007/s13770-012-0051-3
Google Scholar
[15]
Y.X. Pang, X. Bao, Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles, J. Eur. Ceram. Soc. 3 (2003)1697-1704.
DOI: 10.1016/s0955-2219(02)00413-2
Google Scholar
[16]
Y. Ayukawa, Y. Suzuki, K. Tsuru, K. Koyano, K. Ishikawa, Histological Comparison in Rats between Carbonate Apatite Fabricated from Gypsum and Sintered Hydroxyapatite on Bone Remodeling, Biomed. Res. Int. 2015 (2015) 7.
DOI: 10.1155/2015/579541
Google Scholar
[17]
G. Fernandez de Grado, L. Keller, Y. Idoux-Gillet,Q. Wagner, A.M. Musset, N. Benkirane-Jessel, F. Bornert, D. Offner, Bone substitutes: a review of their characteristics, clinical use, andperspectives for large bone defectsmanagement, J. Tissue Eng. 9 (2018) 1-18.
DOI: 10.1177/2041731418776819
Google Scholar
[18]
T. Szponder, E. Mytnik, Z. Jaegermann, Use of calcium sulfate as a biomaterial in the treatment of bone fractures in rabbits – Preliminary studies, Bull. Vet. Inst. Pulawy. 57(2013) 119-122.
DOI: 10.2478/bvip-2013-0022
Google Scholar
[19]
Li ST, et al., Isolation and Purification of a Porous Carbonate Apatite. Science Technology Innovation. (2014) 1-13.
Google Scholar