Characterization of Granular Calcium Sulfate Dihydrate-Gelatin Composite for Bone Void Filler

Article Preview

Abstract:

Calcium sulfate dihydrate (CSD) cement has been used as bone filler for decades. It is also used as antibiotics carrier to treat osteomyelitis. However, CSD cement alone when applied at bone defect has some limitation such as its brittleness. The brittleness limits its handling property. Thus, the aim of this study is to fabricate granular CSD cement-gelatin (CSD-Gel) that has good handling property to be used as bone void filler. To prepare CSD-Gel composite, granular CSD was prepared from calcium sulfate hemihydrate (CaSO4.0.5H2O; CSH) and distilled water with water/powder (W/P) ratio of 0.5. The CSD cement was crushed and sieved into 300-500 μm. The obtained granular CSD was then mixed with 3 wt.% and 7 wt.% gelatin solution, followed by freeze drying for 48 hours. The CSD granules were surrounded by gelatin matrix in all specimens. It was observed that more gelatin matrix found in the space between the granules in in the composite with 7 wt% gelatin compared with that in 3 wt% gelatin. Mechanical evaluation revealed that CSD-Gel 7% has significant higher compressive strength compared with that of CSD-Gel 3%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-74

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Fernandez de Grado, L. Keller, Y. Idoux-Gillet, Q. Wagner, A.M. Musset, N. Benkirane-Jessel, F. Bornert, D. Offner, Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management, J. Tissue Eng. 9 (2018) 1-18.

DOI: 10.1177/2041731418776819

Google Scholar

[2] R. Strocchi, G. Orsini, G. Iezzi, A. Scarano, C. Rubini, G. Pecora, A. Piattelli, Bone regeneration with calcium sulfate: evidence for increased angiogenesis in rabbits, J. Oral Implantol. 28 (2002) 273-278.

DOI: 10.1563/1548-1336(2002)028<0273:brwcse>2.3.co;2

Google Scholar

[3] T. Szponder, E. Mytnik, Z. Jaegermann, Use of calcium sulfate as a biomaterial in the treatment of bone fractures in rabbits – Preliminary studies, Bull. Vet. Inst. Pulawy, 57 (2013) 119-122.

DOI: 10.2478/bvip-2013-0022

Google Scholar

[4] L.F. Peltier, E.Y. Bickel, R. Lillo, M.S. Thein, The Use of plaster of paris to fill defects in bone, Ann. Surg. 146 (1957) 61–69.

DOI: 10.1097/00000658-195707000-00007

Google Scholar

[5] D. Pförringer, A. Obermeier, M. Kiokekli, H. Büchner, S. Vogt, A. Stemberger, R. Burgkart, M. Lucke, Antimicrobial Formulations of Absorbable Bone Substitute Materials as Drug Carriers Based on Calcium Sulfate, Antimicrob. Agents Chemother., 60 (2016) 3897-3905.

DOI: 10.1128/aac.00080-16

Google Scholar

[6] A.C. Parker, J.K. Smith, H.S. Courtney, W.O. Haggard, Evaluation of two sources of calcium sulfate for a local drug delivery system: A pilot study, Clin. Orthop. Relat. Res., 469 (2011) 3008–3015.

DOI: 10.1007/s11999-011-1911-1

Google Scholar

[7] C. Bibbo, D.V. Patel, The effect of demineralized bone matrix-calcium sulfate with vancomycin on calcaneal fracture healing and infection rates: a prospective study, Foot Ankle Int. 27(2006) 487-493.

DOI: 10.1177/107110070602700702

Google Scholar

[8] A. La Gatta, A. De Rosa, P. Laurienzo, M. Malinconico, M. De Rosa, C. Schiraldi, A novel injectable poly(epsilon-caprolactone)/calcium sulfate system for bone regeneration: synthesis and characterization, Macromol. Biosci. 4(2005)1108-1117.

DOI: 10.1002/mabi.200500114

Google Scholar

[9] R.M. Wilkins, C.M. Kelly, D.E. Giusti, Bioassayed demineralized bone matrix and calcium sulfate: use in bone-grafting procedures, Ann. Chir. Gynaecol., 88(1999)180-185.

Google Scholar

[10] M.A. Reynolds, M.E. Aichelmann-Reidy, J.D. Kassolis, H.S. Prasad, M.D. Rohrer, Calcium sulfate-carboxymethylcellulose bone graft binder: Histologic and morphometric evaluation in a critical size defect, J. Biomed. Mater. Res. B. Appl. Biomater. 83 (2007) 451-458.

DOI: 10.1002/jbm.b.30815

Google Scholar

[11] D. Barbieri, H. Yuan, F. de Groot, W.R. Walsh, J.D. de Bruijn, Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic, Acta Biomater. 7 (2011) 2007-2014.

DOI: 10.1016/j.actbio.2011.01.017

Google Scholar

[12] S. Panzavolta, P. Torricelli, S. Casolari, A. Parrilli, M. Fini, A. Bigi, Strontium-substituted-hydroxyapatite-gelatin biomimetic scaffolds modulate bone cell response, Micromol. Biosci. 18 (2018) e1800096.

DOI: 10.1002/mabi.201800096

Google Scholar

[13] P.C. Chang, H.C. Chang, T.C. Lin, W.C. Tai, Preclinical alveolar ridge preservation using small-sized particles of bone replacement graft in combination with a gelatin cryogel scaffold, J. Periodontol. (2018)1–9.

DOI: 10.1002/jper.17-0629

Google Scholar

[14] H. Kim, G.H. Yang, C.H. Choi, Y.S. Cho, G. Kim, Gelatin/PVA scaffolds fabricated using a 3D-printing process employed with a low-temperature plate for hard tissue regeneration: Fabrication and characterizations, Int. J. Biol. Macromol. 120 (2018) 119-127.

DOI: 10.1016/j.ijbiomac.2018.07.159

Google Scholar

[15] J. Huh, J. Lee, W. Kim, M. Yeo, G. Kim, Preparation and characterization of gelatin/α-TCP/SF biocomposite scaffold for bone tissue regeneration, Int. J. Biol. Macromol. 110 (2018) 488-496.

DOI: 10.1016/j.ijbiomac.2017.09.030

Google Scholar

[16] A. Georgopoulou, F. Papadogiannis, A. Batsali, J. Marakis, K. Alpantaki, A.G. Eliopoulos, C. Pontikoglou, M. Chatzinikolaidou, Chitosan/gelatin scaffolds support bone regeneration, J. Mater. Sci. Mater. Med. 29 (2018) 59.

DOI: 10.1007/s10856-018-6064-2

Google Scholar

[17] S. Rungsiyanont, N. Dhanesuan, S. Swasdison, S. Kasugai, Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells, J. Biomater. Appl. 27 (2012) 47-54.

DOI: 10.1177/0885328210391920

Google Scholar