[1]
G. Fernandez de Grado, L. Keller, Y. Idoux-Gillet, Q. Wagner, A.M. Musset, N. Benkirane-Jessel, F. Bornert, D. Offner, Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management, J. Tissue Eng. 9 (2018) 1-18.
DOI: 10.1177/2041731418776819
Google Scholar
[2]
R. Strocchi, G. Orsini, G. Iezzi, A. Scarano, C. Rubini, G. Pecora, A. Piattelli, Bone regeneration with calcium sulfate: evidence for increased angiogenesis in rabbits, J. Oral Implantol. 28 (2002) 273-278.
DOI: 10.1563/1548-1336(2002)028<0273:brwcse>2.3.co;2
Google Scholar
[3]
T. Szponder, E. Mytnik, Z. Jaegermann, Use of calcium sulfate as a biomaterial in the treatment of bone fractures in rabbits – Preliminary studies, Bull. Vet. Inst. Pulawy, 57 (2013) 119-122.
DOI: 10.2478/bvip-2013-0022
Google Scholar
[4]
L.F. Peltier, E.Y. Bickel, R. Lillo, M.S. Thein, The Use of plaster of paris to fill defects in bone, Ann. Surg. 146 (1957) 61–69.
DOI: 10.1097/00000658-195707000-00007
Google Scholar
[5]
D. Pförringer, A. Obermeier, M. Kiokekli, H. Büchner, S. Vogt, A. Stemberger, R. Burgkart, M. Lucke, Antimicrobial Formulations of Absorbable Bone Substitute Materials as Drug Carriers Based on Calcium Sulfate, Antimicrob. Agents Chemother., 60 (2016) 3897-3905.
DOI: 10.1128/aac.00080-16
Google Scholar
[6]
A.C. Parker, J.K. Smith, H.S. Courtney, W.O. Haggard, Evaluation of two sources of calcium sulfate for a local drug delivery system: A pilot study, Clin. Orthop. Relat. Res., 469 (2011) 3008–3015.
DOI: 10.1007/s11999-011-1911-1
Google Scholar
[7]
C. Bibbo, D.V. Patel, The effect of demineralized bone matrix-calcium sulfate with vancomycin on calcaneal fracture healing and infection rates: a prospective study, Foot Ankle Int. 27(2006) 487-493.
DOI: 10.1177/107110070602700702
Google Scholar
[8]
A. La Gatta, A. De Rosa, P. Laurienzo, M. Malinconico, M. De Rosa, C. Schiraldi, A novel injectable poly(epsilon-caprolactone)/calcium sulfate system for bone regeneration: synthesis and characterization, Macromol. Biosci. 4(2005)1108-1117.
DOI: 10.1002/mabi.200500114
Google Scholar
[9]
R.M. Wilkins, C.M. Kelly, D.E. Giusti, Bioassayed demineralized bone matrix and calcium sulfate: use in bone-grafting procedures, Ann. Chir. Gynaecol., 88(1999)180-185.
Google Scholar
[10]
M.A. Reynolds, M.E. Aichelmann-Reidy, J.D. Kassolis, H.S. Prasad, M.D. Rohrer, Calcium sulfate-carboxymethylcellulose bone graft binder: Histologic and morphometric evaluation in a critical size defect, J. Biomed. Mater. Res. B. Appl. Biomater. 83 (2007) 451-458.
DOI: 10.1002/jbm.b.30815
Google Scholar
[11]
D. Barbieri, H. Yuan, F. de Groot, W.R. Walsh, J.D. de Bruijn, Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic, Acta Biomater. 7 (2011) 2007-2014.
DOI: 10.1016/j.actbio.2011.01.017
Google Scholar
[12]
S. Panzavolta, P. Torricelli, S. Casolari, A. Parrilli, M. Fini, A. Bigi, Strontium-substituted-hydroxyapatite-gelatin biomimetic scaffolds modulate bone cell response, Micromol. Biosci. 18 (2018) e1800096.
DOI: 10.1002/mabi.201800096
Google Scholar
[13]
P.C. Chang, H.C. Chang, T.C. Lin, W.C. Tai, Preclinical alveolar ridge preservation using small-sized particles of bone replacement graft in combination with a gelatin cryogel scaffold, J. Periodontol. (2018)1–9.
DOI: 10.1002/jper.17-0629
Google Scholar
[14]
H. Kim, G.H. Yang, C.H. Choi, Y.S. Cho, G. Kim, Gelatin/PVA scaffolds fabricated using a 3D-printing process employed with a low-temperature plate for hard tissue regeneration: Fabrication and characterizations, Int. J. Biol. Macromol. 120 (2018) 119-127.
DOI: 10.1016/j.ijbiomac.2018.07.159
Google Scholar
[15]
J. Huh, J. Lee, W. Kim, M. Yeo, G. Kim, Preparation and characterization of gelatin/α-TCP/SF biocomposite scaffold for bone tissue regeneration, Int. J. Biol. Macromol. 110 (2018) 488-496.
DOI: 10.1016/j.ijbiomac.2017.09.030
Google Scholar
[16]
A. Georgopoulou, F. Papadogiannis, A. Batsali, J. Marakis, K. Alpantaki, A.G. Eliopoulos, C. Pontikoglou, M. Chatzinikolaidou, Chitosan/gelatin scaffolds support bone regeneration, J. Mater. Sci. Mater. Med. 29 (2018) 59.
DOI: 10.1007/s10856-018-6064-2
Google Scholar
[17]
S. Rungsiyanont, N. Dhanesuan, S. Swasdison, S. Kasugai, Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells, J. Biomater. Appl. 27 (2012) 47-54.
DOI: 10.1177/0885328210391920
Google Scholar