[1]
F. Monticelli, C. Goracci, M. Ferrari. Micromorphology of the fiber post-resin core unit: a scanning electron microscopy evaluation, Dent. Mater. 20 (2004) 176-83.
DOI: 10.1016/s0109-5641(03)00089-7
Google Scholar
[2]
M. Ferrari, A. Vichi, F. Garcia-Godoy. Clinical evaluation of fiber-reinforced epoxy resin posts and cast post and cores, Am. Dent. 13 (2000) 15B-18B.
Google Scholar
[3]
C. Goracci, M. Ferrari. Current perspectives on post systems: a literature review, Aust. Dent. J. 56 (2011) 77-83.
Google Scholar
[4]
A. Lamichhane, C. Xu, F.Zhang. Dental fiber-post resin base material: a review, J. Adv. Prosthodont. 6 (2014) 60-5.
DOI: 10.4047/jap.2014.6.1.60
Google Scholar
[5]
C. J. Soares, F.R. Santana, J.C Pereira, T. S. Araujo, M. S. Menezes. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bisGMA fiber-reinforced resin posts, J. Prosthet. Dent. 99 (2008) 444-54.
DOI: 10.1016/s0022-3913(08)60106-7
Google Scholar
[6]
W. A. Cheung. A review of the management of endodontically treated teeth. Post, core and the final restoration, J. Am. Dent. Assoc.136 (2005) 611-9.
Google Scholar
[7]
L. V. Lassila, J. Tanner, A. M. Le Bell, K. Narva, P. K. Vallittu. Flexural properties of fiber reinforced root canal posts, Dent. Mater. 20 (2004) 29-36.
DOI: 10.1016/s0109-5641(03)00065-4
Google Scholar
[8]
V.R. Novais, P.S Quagliatto, A. D. Bona, L. Correr-Sobrinho, C. J. Soares. Flexural modulus, flexural strength, and stiffness of fiber-reinforced posts, Indian J. Dent. Res. 20 (2009) 277-81.
DOI: 10.4103/0970-9290.57357
Google Scholar
[9]
J.L. Drummond, M. S. Bapna. Static and cyclic loading of fiber reinforced dental resin, Dent. Mater. 19 (2003) 226-31.
DOI: 10.1016/s0109-5641(02)00034-9
Google Scholar
[10]
S. Lin, Q. Cai, J. Ji, G. Sui, Y. Yu, X. Yang, Q. Ma, Y. Wei, X. Deng. Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation, Compos. Sci. Technol. 68 (2008) 3322–3329.
DOI: 10.1016/j.compscitech.2008.08.033
Google Scholar
[11]
R. Alla, K. N. Raghavendra, R. Vyas, A. Konakanchi. Conventional and contemporary polymers for the fabrication of denture prosthesis: part I – overview, composition and properties, Int. J. Appl. Dent. Sci. 1 (2015) 82–89.
Google Scholar
[12]
U. Ali, K. J. B. A. Karim, N. A. Buang. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA), Polym. Rev. (2015) 1–28.
Google Scholar
[13]
Z. Hasratiningsih, V. Takarini, A. Cahyanto, Y. Faza, L. A. T. W. Asri, B. S. Purwasasmita. Hardness evaluation of PMMA reinforced with two different calcinations temperatures of ZrO2-Al2O3-SiO2 filler system, IOP Conf. Ser. Mater. Sci. Eng. 172 (2017) 012067.
DOI: 10.1088/1757-899x/172/1/012067
Google Scholar
[14]
Y. Faza, Z. Hasratiningsih, A. Harmaji, I. M. Joni. Preparation and Characterization of Zirconia Alumina System via Solution and Solid Phase Mixing Method, AIP Conf. Proc. 1927 (2018) 030030.
DOI: 10.1063/1.5021223
Google Scholar
[15]
L. Ji, C. Saquing. S. A. Khan. X. Zhang. Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers, Nanotechnology 19 (2008) 085605.
DOI: 10.1088/0957-4484/19/8/085605
Google Scholar
[16]
W. Sun, Q. Can, P. Li, X. Deng, Y. Wei, M. Xu, X. Yang. Post-draw PAN–PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite, Dent. Mater. 26 (2010) 873–880.
DOI: 10.1016/j.dental.2010.03.022
Google Scholar
[17]
D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, N. Mitra. Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder, Ceram. Inter. (2006).
DOI: 10.1016/j.ceramint.2006.05.002
Google Scholar
[18]
Z. Hasratiningsih, A. Cahyanto, V. Takarini, E. Karlina, N. Djustiana, R. Febrida, K. Usri, Y. Faza, A. Hardiansyah. B. S. Purwasasmita. Basic Properties of PMMA Reinforced Using Ceramics Particles of ZrO2-Al2O3-SiO2 Coated with Two Types of Coupling Agents, Key Eng. Mater. 696 (2016) 93-98.
DOI: 10.4028/www.scientific.net/kem.696.93
Google Scholar
[19]
D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, N. Mitra. Nanostructured Al2O3–ZrO2 composite synthesized by sol–gel technique: powder processing and microstructure, J. Mater. Sci. 42 (2007) 1847–1855.
DOI: 10.1007/s10853-006-0737-9
Google Scholar
[20]
L. Jiang, P. Yubai, X. Changshu, G. Qiming, Jingkun. Low temperature synthesis of ultrafine a-Al2O3 powder by a simple aqueous sol–gel process, Ceram. Inter. 32 (2005) 587.
Google Scholar
[21]
H. Wang, L. Gao, W. Li, Q. Li, Preparation of nanoscale a-Al2O3 powder by the polyacrylamide gel method, Nanostruc. Mater. 11 (1999) 1263.
DOI: 10.1016/s0965-9773(99)00417-1
Google Scholar
[22]
L. Ji, X. Zhang. Ultrafine polyacrylonitrile/silica composite fibers via electrospinning, Mater. Lett. 62 (2008) 2161–2164.
DOI: 10.1016/j.matlet.2007.11.051
Google Scholar
[23]
M. R. Ayatollahi, M.R.M. Aliha, M.M. Hassani. Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens, Mater. Sci. Eng. A. 417 (2006) 348–356.
DOI: 10.1016/j.msea.2005.11.002
Google Scholar
[24]
M. R. Ayatollahi, A.R. Torabi. Brittle fracture in rounded-tip V-shaped notches, Mater. Des. 31 (2010) 60–67.
DOI: 10.1016/j.matdes.2009.07.017
Google Scholar
[25]
A.L. Yarin, W. Kataphinan, D.H. Reneker, Branching in electrospinning of nanofibers, J. Appl. Phys. 98 (2005) 064501.
DOI: 10.1063/1.2060928
Google Scholar
[26]
K. Garg, G.L. Bowlin, Electrospinning jets and nanofibrous structures, Biomicrofluidics 5 (2011) 013403.
DOI: 10.1063/1.3567097
Google Scholar
[27]
H. Fong. Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins, Polymer. 45(7) (2004) 2427–32.
DOI: 10.1016/j.polymer.2004.01.067
Google Scholar