Flexural Strength Evaluation of Dental Post Prototype Contain ZAS-PMMA Composite Fiber with Electrospinning Methods

Article Preview

Abstract:

Composite fiber were already developed and looked promising in dentistry. PMMA, optically clear polymer, was combined with high mechanically properties ZrO2-Al2O3-SiO2 (ZAS) ceramic powder to improve the flexural strength value of dental post prototype. ZAS powder, with ratio 60:20:20, were first prepared via sol-gel technique. Afterwards, PMMA was dissolved in acetone then incorporate with ZAS powder 1% wt to gain ZAS-PMMA composite fiber via electrospinning method. Dental post prototype were fabricated into two groups, one group contain ZAS-PMMA composite fibers and one group contain neat BisGMA, as control, with amount of each groups samples was 10. As-prepared samples were tested by Universal Testing Machine (UTM) to evaluate the flexural strength values. Based on unpaired T-test analysis (p value < 0.05), the composite fiber post is significantly higher (48.17 %) than the neat BisGMA post. ZAS-PMMA composite fiber post was potential to be used as dental endodontic post in anterior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-99

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Monticelli, C. Goracci, M. Ferrari. Micromorphology of the fiber post-resin core unit: a scanning electron microscopy evaluation, Dent. Mater. 20 (2004) 176-83.

DOI: 10.1016/s0109-5641(03)00089-7

Google Scholar

[2] M. Ferrari, A. Vichi, F. Garcia-Godoy. Clinical evaluation of fiber-reinforced epoxy resin posts and cast post and cores, Am. Dent. 13 (2000) 15B-18B.

Google Scholar

[3] C. Goracci, M. Ferrari. Current perspectives on post systems: a literature review, Aust. Dent. J. 56 (2011) 77-83.

Google Scholar

[4] A. Lamichhane, C. Xu, F.Zhang. Dental fiber-post resin base material: a review, J. Adv. Prosthodont. 6 (2014) 60-5.

DOI: 10.4047/jap.2014.6.1.60

Google Scholar

[5] C. J. Soares, F.R. Santana, J.C Pereira, T. S. Araujo, M. S. Menezes. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bisGMA fiber-reinforced resin posts, J. Prosthet. Dent. 99 (2008) 444-54.

DOI: 10.1016/s0022-3913(08)60106-7

Google Scholar

[6] W. A. Cheung. A review of the management of endodontically treated teeth. Post, core and the final restoration, J. Am. Dent. Assoc.136 (2005) 611-9.

Google Scholar

[7] L. V. Lassila, J. Tanner, A. M. Le Bell, K. Narva, P. K. Vallittu. Flexural properties of fiber reinforced root canal posts, Dent. Mater. 20 (2004) 29-36.

DOI: 10.1016/s0109-5641(03)00065-4

Google Scholar

[8] V.R. Novais, P.S Quagliatto, A. D. Bona, L. Correr-Sobrinho, C. J. Soares. Flexural modulus, flexural strength, and stiffness of fiber-reinforced posts, Indian J. Dent. Res. 20 (2009) 277-81.

DOI: 10.4103/0970-9290.57357

Google Scholar

[9] J.L. Drummond, M. S. Bapna. Static and cyclic loading of fiber reinforced dental resin, Dent. Mater. 19 (2003) 226-31.

DOI: 10.1016/s0109-5641(02)00034-9

Google Scholar

[10] S. Lin, Q. Cai, J. Ji, G. Sui, Y. Yu, X. Yang, Q. Ma, Y. Wei, X. Deng. Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation, Compos. Sci. Technol. 68 (2008) 3322–3329.

DOI: 10.1016/j.compscitech.2008.08.033

Google Scholar

[11] R. Alla, K. N. Raghavendra, R. Vyas, A. Konakanchi. Conventional and contemporary polymers for the fabrication of denture prosthesis: part I – overview, composition and properties, Int. J. Appl. Dent. Sci. 1 (2015) 82–89.

Google Scholar

[12] U. Ali, K. J. B. A. Karim, N. A. Buang. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA), Polym. Rev. (2015) 1–28.

Google Scholar

[13] Z. Hasratiningsih, V. Takarini, A. Cahyanto, Y. Faza, L. A. T. W. Asri, B. S. Purwasasmita. Hardness evaluation of PMMA reinforced with two different calcinations temperatures of ZrO2-Al2O3-SiO2 filler system, IOP Conf. Ser. Mater. Sci. Eng. 172 (2017) 012067.

DOI: 10.1088/1757-899x/172/1/012067

Google Scholar

[14] Y. Faza, Z. Hasratiningsih, A. Harmaji, I. M. Joni. Preparation and Characterization of Zirconia Alumina System via Solution and Solid Phase Mixing Method, AIP Conf. Proc. 1927 (2018) 030030.

DOI: 10.1063/1.5021223

Google Scholar

[15] L. Ji, C. Saquing. S. A. Khan. X. Zhang. Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers, Nanotechnology 19 (2008) 085605.

DOI: 10.1088/0957-4484/19/8/085605

Google Scholar

[16] W. Sun, Q. Can, P. Li, X. Deng, Y. Wei, M. Xu, X. Yang. Post-draw PAN–PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite, Dent. Mater. 26 (2010) 873–880.

DOI: 10.1016/j.dental.2010.03.022

Google Scholar

[17] D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, N. Mitra. Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder, Ceram. Inter. (2006).

DOI: 10.1016/j.ceramint.2006.05.002

Google Scholar

[18] Z. Hasratiningsih, A. Cahyanto, V. Takarini, E. Karlina, N. Djustiana, R. Febrida, K. Usri, Y. Faza, A. Hardiansyah. B. S. Purwasasmita. Basic Properties of PMMA Reinforced Using Ceramics Particles of ZrO2-Al2O3-SiO2 Coated with Two Types of Coupling Agents, Key Eng. Mater. 696 (2016) 93-98.

DOI: 10.4028/www.scientific.net/kem.696.93

Google Scholar

[19] D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, N. Mitra. Nanostructured Al2O3–ZrO2 composite synthesized by sol–gel technique: powder processing and microstructure, J. Mater. Sci. 42 (2007) 1847–1855.

DOI: 10.1007/s10853-006-0737-9

Google Scholar

[20] L. Jiang, P. Yubai, X. Changshu, G. Qiming, Jingkun. Low temperature synthesis of ultrafine a-Al2O3 powder by a simple aqueous sol–gel process, Ceram. Inter. 32 (2005) 587.

Google Scholar

[21] H. Wang, L. Gao, W. Li, Q. Li, Preparation of nanoscale a-Al2O3 powder by the polyacrylamide gel method, Nanostruc. Mater. 11 (1999) 1263.

DOI: 10.1016/s0965-9773(99)00417-1

Google Scholar

[22] L. Ji, X. Zhang. Ultrafine polyacrylonitrile/silica composite fibers via electrospinning, Mater. Lett. 62 (2008) 2161–2164.

DOI: 10.1016/j.matlet.2007.11.051

Google Scholar

[23] M. R. Ayatollahi, M.R.M. Aliha, M.M. Hassani. Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens, Mater. Sci. Eng. A. 417 (2006) 348–356.

DOI: 10.1016/j.msea.2005.11.002

Google Scholar

[24] M. R. Ayatollahi, A.R. Torabi. Brittle fracture in rounded-tip V-shaped notches, Mater. Des. 31 (2010) 60–67.

DOI: 10.1016/j.matdes.2009.07.017

Google Scholar

[25] A.L. Yarin, W. Kataphinan, D.H. Reneker, Branching in electrospinning of nanofibers, J. Appl. Phys. 98 (2005) 064501.

DOI: 10.1063/1.2060928

Google Scholar

[26] K. Garg, G.L. Bowlin, Electrospinning jets and nanofibrous structures, Biomicrofluidics 5 (2011) 013403.

DOI: 10.1063/1.3567097

Google Scholar

[27] H. Fong. Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins, Polymer. 45(7) (2004) 2427–32.

DOI: 10.1016/j.polymer.2004.01.067

Google Scholar