[1]
R. Yu. Urazbakhtin, D. A. Yungmeyster, The results of studies of the tunneling rescue complex for coal mines, IOP Conference Series: Materials Science and Engineering 560 (2019) 012130.
DOI: 10.1088/1757-899x/560/1/012130
Google Scholar
[2]
J. Stokes, Theory and Application of the High Velocity Oxygen-Fuel (HVOF) Thermal Spray Process, Journal of Thermal Spray Technology, 18(5-6) (2009) 753-768.
DOI: 10.1007/s11666-009-9309-2
Google Scholar
[3]
J. Berget, T. Rogne, E. Bardal, Erosion-corrosion properties of different WC-Co-Cr coatings deposited by the HVOF process-Influence of metallic matrix composition and spray powder size distribution, Surf. Coat. Technol. 201 (2007) 7619-7625.
DOI: 10.1016/j.surfcoat.2007.02.032
Google Scholar
[4]
V. V. Gabov, D. A. Zadkov, K. L. Nguyen, Features of elementary burst formation during cutting coals and isotropic materials with reference cutting tool of mining machines, Journal of Mining Institute 236 (2019) 153.
DOI: 10.31897/pmi.2019.2.153
Google Scholar
[5]
Y. Wang, Z. Z. Xing, Q. Luo, A. Rahman, J. Jiao, S. J. Qu, Y. G. Zheng, J. Shen, Corrosion and erosion–corrosion behaviour of activated combustion high-velocity air fuel sprayed Fe-based amorphous coatings in chloride-containing solutions, Corros. Sci. 98 (2015) 339-353.
DOI: 10.1016/j.corsci.2015.05.044
Google Scholar
[6]
K. Sasaki, G. T. Burstein, Corrosion of stainless steel under impingement by a fluid jet, Corros. Sci. 49 (2007) 92-102.
DOI: 10.1016/j.corsci.2006.05.012
Google Scholar
[7]
Y.G. Wang, Y.G. Zheng, W. Ke, W. H. Sun, W. L. Hou, X. C. Chag, J. Q. Wang, Slurry erosion–corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions, Corros. Sci. 53 (2011) 3177-3185.
DOI: 10.1016/j.corsci.2011.05.062
Google Scholar
[8]
S. Vignesh, K. Shanmugam, V. Balasubramanian, K. Sridhar, Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings, Defense Technology (2017) doi: 10.1016 / j.dt.2017.03 .001.
DOI: 10.1016/j.dt.2017.03.001
Google Scholar
[9]
E. Turunen, T. Varis, T. E. Gustafsson, J. Keskinen, T. Fält, S. P. Hannula, Parameters optimization of HVOF sprayed nanostructured alumina and alumina-nickel composite coatings, Surf. Coat. Technol. 200 (2006) 4987-4994.
DOI: 10.1016/j.surfcoat.2005.05.018
Google Scholar
[10]
Jing Xue, Min Huang, Optimization of Plasma Spray Process via Orthogonal Test Design Method, SVM, and Improved PSO, International Journal of Materials, Mechanics and Manufacturing 5 (2017) 153-158.
DOI: 10.18178/ijmmm.2017.5.3.308
Google Scholar
[11]
R. G. Miller, J. E. Freund, D. E. Johnson, Probability and statistics for engineers, Prentice of Hall of India Pvt. Ltd., New Delhi, (1999).
Google Scholar
[12]
D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian, Developing empirical relationships to predict porosity and microhardness of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy, J. Manuf. Sci. Prod. 15 (2015) 169-181.
DOI: 10.1515/jmsp-2014-0018
Google Scholar
[13]
J. Kawakita, S. Kuroda, T. Kodama, Evaluation of through-porosity of HVOF sprayed coating, Surf. Coat. Technol. 166 (2003) 17-23.
DOI: 10.1016/s0257-8972(02)00719-3
Google Scholar