Analysis of Thermoelastic Damping of Functionally Graded Material Micro Plate Based on the Mindlin Plate Theory

Article Preview

Abstract:

In this paper, thermoelastic damping (TED) in a simply supported rectangular functionally graded material (FGM) micro plate with continuous variation of the material properties along the thickness direction is performed. The equations of motion and the heat conduction equation coupled with the thermal effects are derived based on the Mindlin plate theory and the one-way coupled heat conduction theory, respectively. The heat conduction equation with variable coefficients is solved by using the layer-wise homogenization approach. Analytical solution of TED is obtained by complex frequency method. Numerical results of TED are presented for the rectangular FGM micro plate made of ceramic-metal constituents with the power-law gradient profile. The effects of the shear deformation, the material gradient index, the plate thickness on the TED of the FGM micro plate are studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-71

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Zener, Internal fraction in solids. I. Theory of internal fraction in reeds. Physical Review. 53(1937): 90-99.

Google Scholar

[2] R. Lifshitz, R. M. Roukes, Thermoelastic dampinginmicro –and nanomechanical systems, Phys. Rev. B. 61(2000) : 560 0-5609.

Google Scholar

[3] A. H. Nayfeh, M. I. Younis, Modeling and simulations of thermoelastic damping in microplates, J. Micromech. Microeng. 14(2004): 1711-1717.

DOI: 10.1088/0960-1317/14/12/016

Google Scholar

[4] Y. X. Sun, M. Saka, Thermoelastic damping in micro-scale circular plate resonators, J. Sound and Vib. 329(2010): 328–337.

DOI: 10.1016/j.jsv.2009.09.014

Google Scholar

[5] S. Salajeghe, S. E. Khadem, M. Rasekh, Nonlinear analysis of thermoelastic damping in axisymmetric vibration of micro circular thin-plate resonators,Applied Mathematical Modelling. 36(2012): 5991–6000.

DOI: 10.1016/j.apm.2012.01.027

Google Scholar

[6] P. Li, Y. M. Fang, R. F. Hu, Thermoelastic damping in rectangular and circular microplate resonators, J. Sound Vib. 331(2012): 721–733.

DOI: 10.1016/j.jsv.2011.10.005

Google Scholar

[7] G. E. Bishop, V. Kinra, Elastothermaldynamic damping in laminated composites, Int. J. Solids Structures. 34(1997): 1075-1092.

DOI: 10.1016/s0020-7683(96)00085-6

Google Scholar

[8] W. L. Zuo, P. Li, Y. M. Fang, J. R. Zhang, Thermoelastic damping in asymmetric three-layered microbeam resonators, Journal of Applied Mechanics. 83(2016): 061002-1.

DOI: 10.1115/1.4032919

Google Scholar

[9] W. L. Zuo, P. Li, J. R. Zhang, Y. M. Fang, Analytical modeling of thermoelastic damping in bilayered microplate resonators, Int. J. Mechanical Science, 106(2016): 128-137.

DOI: 10.1016/j.ijmecsci.2015.12.009

Google Scholar

[10] S. Azizi , M. R. Ghazavi, G. Rezazadeh, S. E. Khade, Thermo-elastic damping in a functionally graded piezoelectric micro-resonator. Int. J. Mechanics and Materials in Design,11(2015): 357–369.

DOI: 10.1007/s10999-014-9285-7

Google Scholar

[11] A. A. Emami, A. Alibeigloo, Exact solution for thermal damping of functionally graded Timoshenko microbeams, Journal of Thermal Stresses. 39(2016): 231-243.

DOI: 10.1080/01495739.2015.1124631

Google Scholar

[12] S. R. Li, X. Xu, S. Chen, Analysis of thermoelastic damping of functionally graded material beam resonators, Composite Structures. 182(2017):728-736.

DOI: 10.1016/j.compstruct.2017.09.056

Google Scholar

[13] S. R. Li, S. Chen, P. Xiong, Thermoelastic damping in functionally graded material circular micro plates, Journal of Thermal Stresses 41(2018): 1396-1412.

DOI: 10.1080/01495739.2018.1505446

Google Scholar