Correlating Structure and Electrical Properties in Rotary Swaged Al/Cu Clad Composites

Article Preview

Abstract:

Thorough analyses were focused on characterization of deformation behaviour of the component metals, orientations of their structural units, and development of intermetallic phases on the interfaces within Cu/Al clad composites produced by rotary swaging at 20 °C and 250 °C. The shapes of the cross-sections of Al wires within the composites were affected by the increasing total imposed strain more at 250 °C, the 250 °C composites also exhibited formation of intermetallics at higher swaging degrees. Intermetallics decreased the electric conductivity, which was generally higher for 20 °C samples, however, the conductivity was also affected by the occurring deformation hardening/softening. The average microhardness of Cu exceeded 100 HV for all the samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Kunčická, R. Kocich, and T.C. Lowe, Advances in metals and alloys for joint replacement, Progress in Materials Science, Vol. 88, p.232–280, 2017.

DOI: 10.1016/j.pmatsci.2017.04.002

Google Scholar

[2] V. Kostopoulos, A. Masouras, A. Baltopoulos, A. Vavouliotis, G. Sotiriadis, and L. Pambaguian, A critical review of nanotechnologies for composite aerospace structures, CEAS Space Journal, Vol. 9, p.35–57, 2017.

DOI: 10.1007/s12567-016-0123-7

Google Scholar

[3] H. Dyja, S. Mróz, and A. Milenin, Theoretical and experimental analysis of the rolling process of bimetallic rods Cu-steel and Cu-Al, Journal of Materials Processing Technology, Vol. 153–154, p.100–107, 2004.

DOI: 10.1016/j.jmatprotec.2004.04.186

Google Scholar

[4] R. Kocich, L. Kunčická, A. Macháčková, and M. Šofer, Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites, Materials and Design, Vol. 123, pp.137-146, 2017.

DOI: 10.1016/j.matdes.2017.03.048

Google Scholar

[5] R. Mendes, J.B. Ribeiro, and A. Loureiro, Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration, Materials and Design, Vol. 51, p.182–192, 2013.

DOI: 10.1016/j.matdes.2013.03.069

Google Scholar

[6] Y. Zhang, D.Q. Sun, X.Y. Gu, Z.Z. and Duan, H.M. Li, Nd:YAG pulsed laser welding of TC4 Ti alloy to 301L stainless steel using Ta/V/Fe composite interlayer, Materials Letters, Vol. 212, pp.54-57, 2018.

DOI: 10.1016/j.matlet.2017.10.057

Google Scholar

[7] R. Kocich, L. Kunčická, C.F. Davis, T.C. Lowe, I. Szurman, and A. Macháčková, Deformation behavior of multilayered Al–Cu clad composite during cold-swaging, Materials and Design, Vol. 90, p.379–388, 2016.

DOI: 10.1016/j.matdes.2015.10.145

Google Scholar

[8] H. Yu, C. Lu, A.K. Tieu, H. Li, A. Godbole, and C. Kong, Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets, Materials Science and Engineering A, Vol. 660, p.195–204, 2016.

DOI: 10.1016/j.msea.2016.02.087

Google Scholar

[9] R. Kocich, A. Macháčková, and F. Fojtík, Comparison of strain and stress conditions in conventional and ARB rolling processes, International Journal of Mechanical Sciences, Vol. 64, p.54–61, 2012.

DOI: 10.1016/j.ijmecsci.2012.08.003

Google Scholar

[10] C. W. Wu, and R. Q. Hsu, Extrusion analysis and workability prediction of three-layer composite hexagonal clad rods, Journal of Materials Processing Technology, Vol. 174, p.312–317, 2006.

DOI: 10.1016/j.jmatprotec.2006.02.004

Google Scholar

[11] V.A. Beloshenko, V.N. Varyukhin, V.Y. Dmitrenko, Y.I. Nepochatykh, V.Z. Spuskanyuk, A.N. Cherkasov, and B.A. Shevchenko, Structure and magnetic properties of Cu-Fe fiber composites obtained using packet hydrostatic extrusion, Technical Physics, Vol. 54, p.1790–1794, 2009.

DOI: 10.1134/s1063784209120123

Google Scholar

[12] L. Kunčická, R. Kocich, J. Drápala, and V.A. Andreyachshenko, FEM simulations and comparison of the ECAP and ECAP-PBP influence on Ti6Al4V alloy's deformation behaviour, Proc. 22nd Int. Metall. Mater. Conf. Metal 2013, p.391–396, Brno, Czech Republic, (2013).

DOI: 10.1016/j.micron.2012.06.011

Google Scholar

[13] A.B. Naizabekov, V.A. Andreyachshenko, and R. Kocich, Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP, Micron, Vol. 44, p.210–217, 2013.

DOI: 10.1016/j.micron.2012.06.011

Google Scholar

[14] R. Kocich, A. Macháčková, L. Kunčická, and F. Fojtík, Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites, Materials and Design, Vol. 71, p.36–47, (2015).

DOI: 10.1016/j.matdes.2015.01.008

Google Scholar

[15] H. Wang, J. Han, and Q. Hao, Fabrication of laminated-metal composite tubes by multi-billet rotary swaging technique, The International Journal of Advanced Manufacturing Technology, Vol. 76, p.713–719, 2015.

DOI: 10.1007/s00170-014-6302-9

Google Scholar

[16] R. Kocich, L. Kunčická, P. Král, and P. Strunz, Characterization of innovative rotary swaged Cu-Al clad composite wire conductors, Materials and Design, Vol. 160, pp.828-835, (2018).

DOI: 10.1016/j.matdes.2018.10.027

Google Scholar

[17] L. Kunčická, R. Kocich, C. Hervoches, and A. Macháčková, Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Materials Science and Engineering A, Vol. 704, pp.25-31, 2017.

DOI: 10.1016/j.msea.2017.07.096

Google Scholar

[18] R. Kocich, L. Kunčická, D. Dohnalík, A. Macháčková, and M. Šofer, Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations, International Journal of Refractory Metals and Hard Materials, Vol. 61, p.264–272, (2016).

DOI: 10.1016/j.ijrmhm.2016.10.005

Google Scholar

[19] L. Kunčická, R. Kocich, P. Strunz, and A. Macháčková, Texture and residual stress within rotary swaged Cu/Al clad composites, Materials Letters, Vol. 230, p.88–91, (2018).

DOI: 10.1016/j.matlet.2018.07.085

Google Scholar

[20] Y. Beyerlein, and L.S. Toth, Texture evolution in equal-channel angular extrusion, Progress in Materials Science, Vol. 54, pp.427-510, (2009).

DOI: 10.1016/j.pmatsci.2009.01.001

Google Scholar

[21] F.J. Humphreys, and M. Hetherly, Recrystallization and Related Annealing Phenomena. 2nd ed. Oxford: Elsevier Ltd; (2004).

Google Scholar