Effect of Swaging Temperature on Deformation Behaviour of W93Ni6Co1 Tungsten Heavy Alloy

Article Preview

Abstract:

The study investigates a W93Ni6Co1 tungsten heavy alloy rotary swaged at 20 °C and 900 °C with the aim to optimize its mechanical properties. Deformation behaviour was predicted via numerical simulations and subsequently verified via experimental swaging. The results showed that swaging at 900 °C led to substantial increase in ductility (24% elongation after the first pass), whereas swaging at room temperature primarily increased the UTS (up to 1800 MPa after the second pass). Among the key differences between both the swaging temperature modes were the different substructure developments; the higher swaging temperature imparted activation of softening processes within the γ matrix and homogenization of residual stress. The W agglomerates within both the swaged pieces featured the presence of <101> and <001> preferential orientations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-96

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Kunčická, R. Kocich, C. Hervoches, A. Macháčková, Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy, Mater. Sci. Eng. A. 704 (2017) 25–31.

DOI: 10.1016/j.msea.2017.07.096

Google Scholar

[2] D. Rittel, G., Weisbrod, Dynamic fracture of tungsten base heavy alloys, Int. J. Fract. 112 (2001) 87-98.

Google Scholar

[3] D. Handtrack, B. Tabernig, H. Kestler, P. Pohl, W. Glatz, L.S. Sigl, Tungsten Heavy Alloys for Collimators and Shieldings, 18th International Plansee Seminar, Reutte, Austria, (2013).

Google Scholar

[4] R. Kocich, L. Kunčická, D. Dohnalík, A. Macháčková, M. Šofer, Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations, Int. J. Refract. Met. Hard Mater. 61 (2016) 264–272.

DOI: 10.1016/j.ijrmhm.2016.10.005

Google Scholar

[5] U. Ravi Kiran, J. Kumar, V. Kumar, M. Sankaranarayana, G.V.S. Nageswara Rao, T.K. Nandy, Effect of cyclic heat treatment and swaging on mechanical properties of the tungsten heavy alloys, Mater. Sci. Eng. A. 656 (2016) 256-265.

DOI: 10.1016/j.msea.2016.01.024

Google Scholar

[6] N. Durlu, N.K. Caliskan, B. Sakir, Effect of swaging on microstructure and tensile properties of W-Ni-Fe alloys, Int. J. Refract. Met. Hard Mater. 42 (2014) 126-131.

DOI: 10.1016/j.ijrmhm.2013.08.013

Google Scholar

[7] L. Kunčická, T.C. Lowe, C.F. Davis, R. Kocich, M. Pohludka, Synthesis of an Al/Al2O3 composite by severe plastic deformation, Mater. Sci. Eng. A. 646 (2015) 234–241.

DOI: 10.1016/j.msea.2015.08.075

Google Scholar

[8] R. Kocich, M. Greger, A. Macháčková, Finite element investigation of influence of selected factors on ECAP process, in: Metal 2010 19th 19th international metallurgical and materials conference, Tanger Ltd., 2010: p.166–171.

Google Scholar

[9] A.B. Naizabekov, V.A. Andreyachshenko, R. Kocich, Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP, Micron 44 (2013) 210-217.

DOI: 10.1016/j.micron.2012.06.011

Google Scholar

[10] R. Kocich, L. Kunčická, A. Macháčková, Twist Channel Multi-Angular Pressing ( TCMAP ) as a method for increasing the efficiency of SPD, IOP Conf. Ser. Mater. Sci. Eng. 63 (2014) 12006.

DOI: 10.1088/1757-899x/63/1/012006

Google Scholar

[11] R. Kocich, A. Macháčková, F. Fojtík, Comparison of strain and stress conditions in conventional and ARB rolling processes, Int. J. Mech. Sci. 64 (2012) 54–61.

DOI: 10.1016/j.ijmecsci.2012.08.003

Google Scholar

[12] R. Kocich, A. Macháčková, L. Kunčická, F. Fojtík, Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites, Mater. Des. 71 (2015) 36-47.

DOI: 10.1016/j.matdes.2015.01.008

Google Scholar

[13] B. Katavić, Z. Odanović, M. Burzić, Investigation of the rotary swaging and heat treatment on the behavior of W- and γ-phases in PM 92.5W-5Ni-2.5Fe-0.26Co heavy alloy, Mater. Sci. Eng. A 492 (2008) 337-345.

DOI: 10.1016/j.msea.2008.05.021

Google Scholar

[14] R. Kocich, L. Kunčická, P. Král, P. Strunz, Characterization of innovative rotary swaged Cu-Al clad composite wire conductors, Mater. Des. 160 (2018) 828–835.

DOI: 10.1016/j.matdes.2018.10.027

Google Scholar

[15] R. Liu, Z.M. Xie, X. Yao, T. Zhang, X.P. Wang, T. Hao, Q.F. Fang, C.S. Liu, Effects of swaging and annealing on the microstructure and mechanical properties of ZrC dispersion-strengthened tungsten, Int. J. Refract. Met. Hard Mater. 76 (2018) 33–40.

DOI: 10.1016/j.ijrmhm.2018.05.018

Google Scholar

[16] F.-Z. Wang, H. Zhang, B.-J. Ding, R.-H. Zhu, A thermionic tungsten cathode activated with nanothoria and prepared by swaging method, Mater. Sci. Eng. A. 336 (2002) 59–63.

DOI: 10.1016/s0921-5093(01)01969-4

Google Scholar

[17] B. Beausir, J.J. Fundenberger, Analysis Tools for Electron and X-ray diffraction, ATEX - software, www.atex-software.eu, (2017).

Google Scholar

[18] B. Verlinden, J. Driver, I. Samajdar, R.D. Doherty, Thermo-mechanical processing of metallic materials, Elsevier Ltd, Amsterdam, (2007).

Google Scholar

[19] F.J. Humphreys, M. Hetherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd, Oxford, (2004).

Google Scholar

[20] C.-L. Chen, S.-H. Ma, Effects of Ni/Co ratio and mechanical alloying on characteristics and sintering behavior of W-Ni-Co tungsten heavy alloys, J. Alloys Compd. 711 (2017) 488–494.

DOI: 10.1016/j.jallcom.2017.04.037

Google Scholar