Features of Obtaining Carbon Plastics Based on Superstructural Polymer Materials

Article Preview

Abstract:

The features of obtaining carbon plastics and specific solutions to problems associated with the compatibility of an inorganic filler and a polymer matrix, the formation of adhesive contact of carbon fillers due to the formation of chemical bonds, mechanical adhesions, local stresses and defects at the phase boundary are considered. Successful solutions are presented that provide high adhesive strength between the filler and the polymer matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

562-570

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.L. Slonov, A.A. Zhansitov, E.V. Rzhevskaya, et al., Influence of the length and concentration of carbon and glass fibers on the properties of polyphenylene sulfone, Fibre Chemistry. 50 (2018) 354-360.

DOI: 10.1007/s10692-019-09989-0

Google Scholar

[2] A.L. Slonov, A.A. Zhansitov, D.M. Khakulova, et al., Development of composite material based on polyphenylene sulfone for 3D printing, Fiber Chemistry. 50 (2018) 373-377.

DOI: 10.1007/s10692-019-09992-5

Google Scholar

[3] A.L. Slonov, A.A. Zhansitov, E.V. Rzhevskaya, et al., Study of the geometric characteristics of carbon fiber fillers on the properties of polyphenylene sulfone, Materials Science Forum. 935 (2018) 5-10.

DOI: 10.4028/www.scientific.net/msf.935.5

Google Scholar

[4] K. Yu, Q. Shi, et al., Carbon fiber reinforced thermoset composite with near 100 % recyclability, Advanced functional materials. 26 (2016) 6098-6106.

DOI: 10.1002/adfm.201602056

Google Scholar

[5] E. Nuri, T. Garstka, K. Potter, et al., Development of the properties of a carbon fiber reinforced thermosetting composite through cure, Composites Part A. Applied Science and Manufacturing. 41 (2010) 401-409.

DOI: 10.1016/j.compositesa.2009.11.007

Google Scholar

[6] J.M. Henshaw, W.J. Han, A.D. Owens, An overview of recycling issues for composite materials, J. Thermoplast. Compos. Mater. 1 (1996) 4-20.

Google Scholar

[7] J. Diaz, L. Rubio, Developments to manufacture structural aeronautical parts in carbon fiber reinforced thermoplastic materials, J. Mater. Process. Technol. (2003) 143-144.

DOI: 10.1016/s0924-0136(03)00450-3

Google Scholar

[8] M. Mrazova, Advanced composite materials of the future in aerospace industry. Carbon fiber fabric reinforced PPS laminates: Influence of temperature on mechanical properties and behavior, Adv. Polym. Technol. 30 (2011) 80-95.

DOI: 10.1002/adv.20239

Google Scholar

[9] J. Cao, L. Chen, Effect of thermal cycling on carbon fiber-reinforced PPS composites, Polym. Compos. 26 (2005) 713-716.

DOI: 10.1002/pc.20148

Google Scholar

[10] I. De Baere, W. Van Paepegem, J. Degrieck, On the design of end tabs for quasistatic and fatigue testing of fiber-reinforced composites, Polym. Compos. 30 (2009) 1016-1026.

DOI: 10.1002/pc.20564

Google Scholar

[11] B. Vieille, L. Aucher, B. Taleb, Carbon fiber fabric reinforced PPS laminates: Influence of temperature on mechanical properties and behavior, Polym. Technol. 30 (2011) 80-95.

DOI: 10.1002/adv.20239

Google Scholar

[12] B. Vieille, J. Aucher, L. Taleb, Comparative study on the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions, Mater. Design. 35 (2012) 707-719.

DOI: 10.1016/j.matdes.2011.10.037

Google Scholar

[13] I. De Baere, W. Van Paepegem, J. Degrieck, Comparison of different setups for fatigue testing of thin composite laminates in bending, Int. J. Fatigue. 31 (2009) 1095-1101.

DOI: 10.1016/j.ijfatigue.2008.05.011

Google Scholar

[14] I. De Baere, W. Van, et al., On the nonlinear evolution of the Poisson's ratio under quasi-static loading for a carbon fabric-reinforced thermoplastic. Part II: Analytical explanation, Polym. Test. 28 (2009) 324-330.

DOI: 10.1016/j.polymertesting.2009.01.006

Google Scholar

[15] A.L. Slonov, I.V. Musov, A.A. Zhansitov, D.M. Khakulova, E.V. Rzhevskaya, S.Yu. Khashirova, Investigation of the Influence of Linear Dimensions and Concentration of Carbon and Glass Fibers on the Properties of Polyetherimide, Key Engineering Materials. 816 (2019) 48-54.

DOI: 10.4028/www.scientific.net/kem.816.48

Google Scholar

[16] A.L. Slonov, A.A. Zhansitov, E.V. Rzhevskaya, D.M. Khakulova, S.Yu. Khashirova, On the plasticization of highly-filled polyphenylene sulfone, Materials Physics and Mechanics. 42 (2019) 535-543.

DOI: 10.4028/www.scientific.net/msf.935.5

Google Scholar

[17] Zh.I. Kurdanova, K.T. Shakhmurzova, A.A. Zhansitov, A.E. Baykaziev, K.Kh. Teunova, S.Yu. Khashirova, Methods for synthesis of polyetherimides, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 62 (2019) 4-14.

DOI: 10.6060/ivkkt.20196206.5892

Google Scholar

[18] A.A. Zhansitov, S.Yu. Khashirova, A.L. Slonov, Zh.I. Kurdanova, A.S. Shabaev, A.A. Khashirov A.K. Mikitaev, Development of technology of polysulfone production for 3D-printing, High Performance Polymers. 29 (2019) 724-729.

DOI: 10.1177/0954008317704500

Google Scholar

[19] D.J. Blundell, B.N. Osborn, Crystalline morphology of the matrix of PEEK carbon fiber aromatic polymer composites. II. Crystallizaton behavior, SAMPE Q. 17 (1986) 1-17.

Google Scholar

[20] D.J. Blundell, F.M. Willmouth, Crystalline morphology of the matrix of PEEK-carbon fiber aromatic polymer composites, SAMPE Q. 17 (1986) 50-57.

Google Scholar

[21] Y. Lee, R.S. Porter, Crystallization of poly (etheretherketone) (PEEK) in carbon fiber composites, Polym. Eng. Sci. 26 (1986) 633-639.

DOI: 10.1002/pen.760260909

Google Scholar

[22] P. Cebe, Non-isothermal crystallization of poly (etheretherketone) aromatic polymer composite, Polym. Compos. 9 (1988) 271-279.

DOI: 10.1002/pc.750090405

Google Scholar

[23] C.N. Velisaris, J.C. Seferis, Heat transfer effects on the processing-structure relationships of polyetheretherketone (PEEK) based composites, Polym. Eng. Sci. 28 (1988) 583-591.

DOI: 10.1002/pen.760280907

Google Scholar

[24] D.J. Blundell, R.A. Crick, В. Fife, et al., Spherulitic morphology of the matrix of thermoplastic PEEK/carbon fiber aromatic polymer composites, J. Mater. Sci. 24 (1989) 2057-2064.

DOI: 10.1007/bf02385421

Google Scholar

[25] W.Z. Nie, J. Li, Effects of plasma and nitric acid treatment of carbon fibers on the mechanical properties of thermoplastic polymer composites, Mechanics composite materials. 46 (2010) 251-256.

DOI: 10.1007/s11029-010-9143-0

Google Scholar

[26] Z. Chen, Coating and functionalization of carbon fibers using tree-step plasma treatment, Plasma processes and polymers. 10 (2013) 1100-1109.

Google Scholar

[27] Z. Liu, Modification of carbon fiber by air plasma and its adhesion with BMI resin, RSC Advances. 4 (2014) 26881-26887.

DOI: 10.1039/c4ra01835d

Google Scholar

[28] W. Li, Effect of plasma modification on the mechanical properties of carbon fiber/phenolphthalein polyaryletherketone composites, Polymer composites. 34 (2013) 368-375.

DOI: 10.1002/pc.22385

Google Scholar

[29] B.Y. Liu, Z. Liu, X. Wang, Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test, J. Polym Test. 32 (2013) 724-730.

DOI: 10.1016/j.polymertesting.2013.03.020

Google Scholar

[30] C. Lu, P. Chen, Q. Yu, Interfacial adhesion of plasma treated carbon fiber/poly (phthalazinone ethersulfone ketone) composite, Appl. Polym. Sci. 106 (2007) 1733-1741.

DOI: 10.1002/app.26840

Google Scholar

[31] H.M. Iqbal, S. Bhowmik, R. Benedictus, Surface modification of high performance polymers by atmospheric pressure plasma and failure mechanism of adhesive bonded joints, Int J. Adhes. 30 (2010) 418-424.

DOI: 10.1016/j.ijadhadh.2010.02.007

Google Scholar

[32] Sh. Zhang, G. Huang, X. Wang, et al., Effect of air plasma treatment on the mechanical properties of polyphenylene sulfide/glass fiber cloth composites, Journal of Reinforced Plastics and Composites. 32 (2013) 786-793.

DOI: 10.1177/0731684412470727

Google Scholar

[33] D. Xu, B. Liu, G. Zhang, Effect of air plasma treatment on interfacial shear strength of carbon fiber - reinforced polyphenylene sulfide, High Performance Polymers. (2015) 1-14.

DOI: 10.1177/0954008315585012

Google Scholar

[34] S. Zhang, Toughening Plastics by Crack Growth Inhibition Through Unidirectionally Deformed Soft Inclusions, Polymer. 54 (2013) 6019-6025.

DOI: 10.1016/j.polymer.2013.08.025

Google Scholar

[35] X. Feng, S. Zhang, S. Zhu Study on Biocompatible PLLA-PEG Blends with High Toughness and Strength Via Pressure-induced-flow Processing, Rsc. Advances. 3 (2013) 11738-11744.

DOI: 10.1039/c3ra40899j

Google Scholar

[36] Y. Xu, H. Zhu, Zh. Zhang, et al., New Way of Strengthening and Toughening for Carbon Fiber Reinforced Polyphenylene Sulfide (CF/PPS) Composites via Matrix Modification, Journal of Wuhan University of Technology-Mater. Sci. Ed. 32 (2017) 1318-1322.

DOI: 10.1007/s11595-017-1747-y

Google Scholar

[37] Y. Yang, C. Lu, X. Su, Effects of emulsion sizing with nano-SiO2 on interfacial properties of carbon fibers/epoxy composites, J. Mater Sci. 42 (2007) 6347-6352.

DOI: 10.1007/s10853-006-1198-x

Google Scholar

[38] X.-J. Shen, L.-X. Meng, Z.-Y. Yan, et al., Improved cryogenic interlaminar shear strength of glass fabric/epoxy composites by graphene oxide, Compos. B. Eng. 73 (2015) 126-131.

DOI: 10.1016/j.compositesb.2014.12.023

Google Scholar

[39] J. Xu, D. Xu, X. Wang, et al., Improved interfacial shear strength of carbon fiber/polyphenylene sulfide composites by grapheme, High Performance Polymers. (2016) 1-9.

DOI: 10.1177/0954008316664398

Google Scholar

[40] M. Naffakh, A.M. Diez-Pascual, C. Marco, et al., Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites, Prog. Polym. Sci. 38 (2013) 1163-1231.

DOI: 10.1016/j.progpolymsci.2013.04.001

Google Scholar

[41] O. Tevet, O. Goldbart, S.R. Cohen, et al., Nanocompression of individual multilayered polyhedral nanoparticles, Nanotechnology. 21 (2010) 365705-365710.

DOI: 10.1088/0957-4484/21/36/365705

Google Scholar

[42] A.M. Diez-Pascual, M. Naffakh, Tuning the properties of carbon fiber-reinforced poly (phenylene sulphide) laminates via incorporation of inorganic nanoparticles, Polymer. 53 (2012) 2369-2378.

DOI: 10.1016/j.polymer.2012.04.010

Google Scholar

[43] B. Ashrafi, A.M. Diez-Pascual, L. Johnson, et al., Processing and properties of PEEK/glass fiber laminates: Effect of addition of single-walled carbon nanotubes, Compos. Part A. 43 (2012) 1267-1279.

DOI: 10.1016/j.compositesa.2012.02.022

Google Scholar

[44] J. Sandler, P. Werner, M.S. Shaffer, et al., Carbon-nanofiber-reinforced poly(etherether ketone) composites, Composites: Part A. 33 (2002) 1033-1039.

DOI: 10.1016/s1359-835x(02)00084-2

Google Scholar

[45] S. Sanchez, E. Fàbregas, New antibodies immobilization system into a graphite polysulfone membrane for amperometric immunosensors, Biosensors and Bioelectronics. 22 (2007) 965-972.

DOI: 10.1016/j.bios.2006.03.022

Google Scholar

[46] J.Y. Wang, Y.Y. Xu, L.P. Zhu, et al., Amphiphilic ABA copolymers used for surface modification of polysulfone membranes, Part 1: Molecular design, synthesis, and characterization, Polymer. 49 (2008) 3256-3264.

DOI: 10.1016/j.polymer.2008.05.033

Google Scholar

[47] Q. Huang, D. Paul, G. Seibig, Advances in solvent-free manufacturing of polymer membranes, Membrane Technology. 140 (2001) 6-9.

DOI: 10.1016/s0958-2118(01)80394-3

Google Scholar

[48] D. Puglia, L. Valentini, J. Kenny, Analysis of the Cure Reaction of Carbon Nanotubes/Epoxy Resin Composites Through Thermal Analysis and Raman Spectroscopy, J. of Applied Polymer Science. 88 (2003) 452-458.

DOI: 10.1002/app.11745

Google Scholar

[49] M. Cho, Sh. Bahadur, A study of the thermal, mechanical and tribological Properties of polyphenylene sulfide composites Reinforced with carbon nanotubes and carbon Nanofibers, Polymer science. (2004) 118-142.

DOI: 10.1007/s11249-006-9173-x

Google Scholar

[50] A. Díez-Pascual, M. Naffakh, Synthesis and characterization of nitrated and aminated poly(phenylene sulfide) derivatives for advanced applications, Mater ChemPhys. 131 (2012) 605-614.

DOI: 10.1016/j.matchemphys.2011.10.025

Google Scholar

[51] Ye.V. Filimonov, M.M. Nosova, Modern methods for forming prepregs based on carbon fibers, Sovremennyye materialy, tekhnika i tekhnologiya. (2013) 355-362.

Google Scholar

[52] N.V. Antyufeyeva, P.L. Zhuravleva, et al., The effect of the degree of curing of the binder on the physicomechanical properties of carbon fiber and the microstructure of the interfacial layer of the carbon fiber/matrix, Klei, germetiki, tekhnologii. 12 (2014) 26-30.

Google Scholar

[53] O.I. Karpovich, A.L. Narkevich, A.V. Dubina, Prepregs based on thermoplastic polymers and glass fabrics and promising areas of their application, Naukoyemkiye tekhnologii funktsional'nykh materialov. (2014) 42-43.

Google Scholar

[54] S. Yumitori, D. Wang, F. Jones, The role of sizing resins in carbon fiber in forced polyethersulfone (PES), Composites. 7 (1994) 698-705.

DOI: 10.1016/0010-4361(94)90204-6

Google Scholar

[55] K. Magniez, T. Chaffraix, В. Fox Toughening of a carbon-fiber composite using electrospun poly(hydroxyether of bisphenol A) nanofibrous membranes through inverse phase separation and inter-domain etherification, Materials. 4 (2011) 1967-1984.

DOI: 10.3390/ma4111967

Google Scholar

[56] G. Li, P. Li, Y. Yu, Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers, Materials Letter. 62 (2008) 511-514.

DOI: 10.1016/j.matlet.2007.05.080

Google Scholar

[57] G.S. Golovkin, A.K. Shibanov, M.I. Stepanova, Polymer composition material. Patent RU № 2057767 (1996).

Google Scholar

[58] G.S. Golovkin, A.K. Shibanov, M.I. Stepanova, Method for appropriating carbon fiber for producing polysulphone carbon plastic. Patent RU № 2054015 (1996).

Google Scholar

[59] A.M. Diez-Pascual, M. Naffakh, J.M. Gonzalez-Dominguez, et al., High performance PEEK/carbon nanotube composites compatibilized with poly(sulfones-I). Structure and thermal properties, Carbon. 48 (2010) 3485-3499.

DOI: 10.1016/j.carbon.2010.05.046

Google Scholar

[60] Y.A. Gorbatkina, I.Y. Gorbunova, et al., Adhesion properties of compositions based on epoxy resin modified with polyetherimide or polysulfone, Mekhanika kompozitsionnykh materialov i konstruktsiy. 20 (2014) 207-218.

Google Scholar

[61] P.A. Oyanguren, M.J. Galante, K.Р. Andromaque, et al., Development of bicontinuous morphologies in polysulfone-epoxyblends, Polymer. 40 (1999) 5249-5255.

DOI: 10.1016/s0032-3861(98)00742-3

Google Scholar

[62] T.H. Yoon, J.D. Priddy, G.D. Lyle, Mechanism and morphological investigations of reactive polysulfone toughened epoxy networks, Macromolecules Symp. 168 (1995) 673-686.

DOI: 10.1002/masy.19950980158

Google Scholar

[63] K. Yamanaka, T. Inoue, Structure development in epoxy resin modified with poly (ether sulphone), Polymer. 30 (1989) 662-667.

DOI: 10.1016/0032-3861(89)90151-1

Google Scholar

[64] T. Yoon, B.S. Kim, D.S. Lee, Structure development via reaction-induced phase separation in tetrafunctional epoxy/polysulfone blends, J. Applied Polymer Science. 66 (1997) 2233-2242.

DOI: 10.1002/(sici)1097-4628(19971219)66:12<2233::aid-app4>3.0.co;2-h

Google Scholar

[65] D. Ratna, M. Patri, B.C. Chakraborty, Amine-terminated polysulfone as modifier for epoxy resin, J. Applied Polymer Science. 65 (1997) 901-907.

DOI: 10.1002/(sici)1097-4628(19970801)65:5<901::aid-app7>3.0.co;2-r

Google Scholar

[66] B.G. Min, J.H. Hodgkin, Z.H. Stachurski, Reaction mechanisms, microstructure and fracture properties of thermoplastic polysulfone-modified epoxy resin, J. Applied Polymer Science. 50 (1993) 1065-1073.

DOI: 10.1002/app.1993.070500615

Google Scholar

[67] C.B. Bucknall, I.K. Partridge, Addition of poly(ether sulfone) to epoxy-resins, British Polymer Journal. 15 (1983) 71-75.

DOI: 10.1002/pi.4980150117

Google Scholar

[68] C.B. Bucknall, I.K. Partridge, Phase separation in epoxy-resins containing poly(ether sulfone), Polymer. 24 (1983) 639-644.

DOI: 10.1016/0032-3861(83)90120-9

Google Scholar