[1]
A.L. Slonov, A.A. Zhansitov, E.V. Rzhevskaya, et al., Influence of the length and concentration of carbon and glass fibers on the properties of polyphenylene sulfone, Fibre Chemistry. 50 (2018) 354-360.
DOI: 10.1007/s10692-019-09989-0
Google Scholar
[2]
A.L. Slonov, A.A. Zhansitov, D.M. Khakulova, et al., Development of composite material based on polyphenylene sulfone for 3D printing, Fiber Chemistry. 50 (2018) 373-377.
DOI: 10.1007/s10692-019-09992-5
Google Scholar
[3]
A.L. Slonov, A.A. Zhansitov, E.V. Rzhevskaya, et al., Study of the geometric characteristics of carbon fiber fillers on the properties of polyphenylene sulfone, Materials Science Forum. 935 (2018) 5-10.
DOI: 10.4028/www.scientific.net/msf.935.5
Google Scholar
[4]
K. Yu, Q. Shi, et al., Carbon fiber reinforced thermoset composite with near 100 % recyclability, Advanced functional materials. 26 (2016) 6098-6106.
DOI: 10.1002/adfm.201602056
Google Scholar
[5]
E. Nuri, T. Garstka, K. Potter, et al., Development of the properties of a carbon fiber reinforced thermosetting composite through cure, Composites Part A. Applied Science and Manufacturing. 41 (2010) 401-409.
DOI: 10.1016/j.compositesa.2009.11.007
Google Scholar
[6]
J.M. Henshaw, W.J. Han, A.D. Owens, An overview of recycling issues for composite materials, J. Thermoplast. Compos. Mater. 1 (1996) 4-20.
Google Scholar
[7]
J. Diaz, L. Rubio, Developments to manufacture structural aeronautical parts in carbon fiber reinforced thermoplastic materials, J. Mater. Process. Technol. (2003) 143-144.
DOI: 10.1016/s0924-0136(03)00450-3
Google Scholar
[8]
M. Mrazova, Advanced composite materials of the future in aerospace industry. Carbon fiber fabric reinforced PPS laminates: Influence of temperature on mechanical properties and behavior, Adv. Polym. Technol. 30 (2011) 80-95.
DOI: 10.1002/adv.20239
Google Scholar
[9]
J. Cao, L. Chen, Effect of thermal cycling on carbon fiber-reinforced PPS composites, Polym. Compos. 26 (2005) 713-716.
DOI: 10.1002/pc.20148
Google Scholar
[10]
I. De Baere, W. Van Paepegem, J. Degrieck, On the design of end tabs for quasistatic and fatigue testing of fiber-reinforced composites, Polym. Compos. 30 (2009) 1016-1026.
DOI: 10.1002/pc.20564
Google Scholar
[11]
B. Vieille, L. Aucher, B. Taleb, Carbon fiber fabric reinforced PPS laminates: Influence of temperature on mechanical properties and behavior, Polym. Technol. 30 (2011) 80-95.
DOI: 10.1002/adv.20239
Google Scholar
[12]
B. Vieille, J. Aucher, L. Taleb, Comparative study on the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions, Mater. Design. 35 (2012) 707-719.
DOI: 10.1016/j.matdes.2011.10.037
Google Scholar
[13]
I. De Baere, W. Van Paepegem, J. Degrieck, Comparison of different setups for fatigue testing of thin composite laminates in bending, Int. J. Fatigue. 31 (2009) 1095-1101.
DOI: 10.1016/j.ijfatigue.2008.05.011
Google Scholar
[14]
I. De Baere, W. Van, et al., On the nonlinear evolution of the Poisson's ratio under quasi-static loading for a carbon fabric-reinforced thermoplastic. Part II: Analytical explanation, Polym. Test. 28 (2009) 324-330.
DOI: 10.1016/j.polymertesting.2009.01.006
Google Scholar
[15]
A.L. Slonov, I.V. Musov, A.A. Zhansitov, D.M. Khakulova, E.V. Rzhevskaya, S.Yu. Khashirova, Investigation of the Influence of Linear Dimensions and Concentration of Carbon and Glass Fibers on the Properties of Polyetherimide, Key Engineering Materials. 816 (2019) 48-54.
DOI: 10.4028/www.scientific.net/kem.816.48
Google Scholar
[16]
A.L. Slonov, A.A. Zhansitov, E.V. Rzhevskaya, D.M. Khakulova, S.Yu. Khashirova, On the plasticization of highly-filled polyphenylene sulfone, Materials Physics and Mechanics. 42 (2019) 535-543.
DOI: 10.4028/www.scientific.net/msf.935.5
Google Scholar
[17]
Zh.I. Kurdanova, K.T. Shakhmurzova, A.A. Zhansitov, A.E. Baykaziev, K.Kh. Teunova, S.Yu. Khashirova, Methods for synthesis of polyetherimides, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 62 (2019) 4-14.
DOI: 10.6060/ivkkt.20196206.5892
Google Scholar
[18]
A.A. Zhansitov, S.Yu. Khashirova, A.L. Slonov, Zh.I. Kurdanova, A.S. Shabaev, A.A. Khashirov A.K. Mikitaev, Development of technology of polysulfone production for 3D-printing, High Performance Polymers. 29 (2019) 724-729.
DOI: 10.1177/0954008317704500
Google Scholar
[19]
D.J. Blundell, B.N. Osborn, Crystalline morphology of the matrix of PEEK carbon fiber aromatic polymer composites. II. Crystallizaton behavior, SAMPE Q. 17 (1986) 1-17.
Google Scholar
[20]
D.J. Blundell, F.M. Willmouth, Crystalline morphology of the matrix of PEEK-carbon fiber aromatic polymer composites, SAMPE Q. 17 (1986) 50-57.
Google Scholar
[21]
Y. Lee, R.S. Porter, Crystallization of poly (etheretherketone) (PEEK) in carbon fiber composites, Polym. Eng. Sci. 26 (1986) 633-639.
DOI: 10.1002/pen.760260909
Google Scholar
[22]
P. Cebe, Non-isothermal crystallization of poly (etheretherketone) aromatic polymer composite, Polym. Compos. 9 (1988) 271-279.
DOI: 10.1002/pc.750090405
Google Scholar
[23]
C.N. Velisaris, J.C. Seferis, Heat transfer effects on the processing-structure relationships of polyetheretherketone (PEEK) based composites, Polym. Eng. Sci. 28 (1988) 583-591.
DOI: 10.1002/pen.760280907
Google Scholar
[24]
D.J. Blundell, R.A. Crick, В. Fife, et al., Spherulitic morphology of the matrix of thermoplastic PEEK/carbon fiber aromatic polymer composites, J. Mater. Sci. 24 (1989) 2057-2064.
DOI: 10.1007/bf02385421
Google Scholar
[25]
W.Z. Nie, J. Li, Effects of plasma and nitric acid treatment of carbon fibers on the mechanical properties of thermoplastic polymer composites, Mechanics composite materials. 46 (2010) 251-256.
DOI: 10.1007/s11029-010-9143-0
Google Scholar
[26]
Z. Chen, Coating and functionalization of carbon fibers using tree-step plasma treatment, Plasma processes and polymers. 10 (2013) 1100-1109.
Google Scholar
[27]
Z. Liu, Modification of carbon fiber by air plasma and its adhesion with BMI resin, RSC Advances. 4 (2014) 26881-26887.
DOI: 10.1039/c4ra01835d
Google Scholar
[28]
W. Li, Effect of plasma modification on the mechanical properties of carbon fiber/phenolphthalein polyaryletherketone composites, Polymer composites. 34 (2013) 368-375.
DOI: 10.1002/pc.22385
Google Scholar
[29]
B.Y. Liu, Z. Liu, X. Wang, Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test, J. Polym Test. 32 (2013) 724-730.
DOI: 10.1016/j.polymertesting.2013.03.020
Google Scholar
[30]
C. Lu, P. Chen, Q. Yu, Interfacial adhesion of plasma treated carbon fiber/poly (phthalazinone ethersulfone ketone) composite, Appl. Polym. Sci. 106 (2007) 1733-1741.
DOI: 10.1002/app.26840
Google Scholar
[31]
H.M. Iqbal, S. Bhowmik, R. Benedictus, Surface modification of high performance polymers by atmospheric pressure plasma and failure mechanism of adhesive bonded joints, Int J. Adhes. 30 (2010) 418-424.
DOI: 10.1016/j.ijadhadh.2010.02.007
Google Scholar
[32]
Sh. Zhang, G. Huang, X. Wang, et al., Effect of air plasma treatment on the mechanical properties of polyphenylene sulfide/glass fiber cloth composites, Journal of Reinforced Plastics and Composites. 32 (2013) 786-793.
DOI: 10.1177/0731684412470727
Google Scholar
[33]
D. Xu, B. Liu, G. Zhang, Effect of air plasma treatment on interfacial shear strength of carbon fiber - reinforced polyphenylene sulfide, High Performance Polymers. (2015) 1-14.
DOI: 10.1177/0954008315585012
Google Scholar
[34]
S. Zhang, Toughening Plastics by Crack Growth Inhibition Through Unidirectionally Deformed Soft Inclusions, Polymer. 54 (2013) 6019-6025.
DOI: 10.1016/j.polymer.2013.08.025
Google Scholar
[35]
X. Feng, S. Zhang, S. Zhu Study on Biocompatible PLLA-PEG Blends with High Toughness and Strength Via Pressure-induced-flow Processing, Rsc. Advances. 3 (2013) 11738-11744.
DOI: 10.1039/c3ra40899j
Google Scholar
[36]
Y. Xu, H. Zhu, Zh. Zhang, et al., New Way of Strengthening and Toughening for Carbon Fiber Reinforced Polyphenylene Sulfide (CF/PPS) Composites via Matrix Modification, Journal of Wuhan University of Technology-Mater. Sci. Ed. 32 (2017) 1318-1322.
DOI: 10.1007/s11595-017-1747-y
Google Scholar
[37]
Y. Yang, C. Lu, X. Su, Effects of emulsion sizing with nano-SiO2 on interfacial properties of carbon fibers/epoxy composites, J. Mater Sci. 42 (2007) 6347-6352.
DOI: 10.1007/s10853-006-1198-x
Google Scholar
[38]
X.-J. Shen, L.-X. Meng, Z.-Y. Yan, et al., Improved cryogenic interlaminar shear strength of glass fabric/epoxy composites by graphene oxide, Compos. B. Eng. 73 (2015) 126-131.
DOI: 10.1016/j.compositesb.2014.12.023
Google Scholar
[39]
J. Xu, D. Xu, X. Wang, et al., Improved interfacial shear strength of carbon fiber/polyphenylene sulfide composites by grapheme, High Performance Polymers. (2016) 1-9.
DOI: 10.1177/0954008316664398
Google Scholar
[40]
M. Naffakh, A.M. Diez-Pascual, C. Marco, et al., Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites, Prog. Polym. Sci. 38 (2013) 1163-1231.
DOI: 10.1016/j.progpolymsci.2013.04.001
Google Scholar
[41]
O. Tevet, O. Goldbart, S.R. Cohen, et al., Nanocompression of individual multilayered polyhedral nanoparticles, Nanotechnology. 21 (2010) 365705-365710.
DOI: 10.1088/0957-4484/21/36/365705
Google Scholar
[42]
A.M. Diez-Pascual, M. Naffakh, Tuning the properties of carbon fiber-reinforced poly (phenylene sulphide) laminates via incorporation of inorganic nanoparticles, Polymer. 53 (2012) 2369-2378.
DOI: 10.1016/j.polymer.2012.04.010
Google Scholar
[43]
B. Ashrafi, A.M. Diez-Pascual, L. Johnson, et al., Processing and properties of PEEK/glass fiber laminates: Effect of addition of single-walled carbon nanotubes, Compos. Part A. 43 (2012) 1267-1279.
DOI: 10.1016/j.compositesa.2012.02.022
Google Scholar
[44]
J. Sandler, P. Werner, M.S. Shaffer, et al., Carbon-nanofiber-reinforced poly(etherether ketone) composites, Composites: Part A. 33 (2002) 1033-1039.
DOI: 10.1016/s1359-835x(02)00084-2
Google Scholar
[45]
S. Sanchez, E. Fàbregas, New antibodies immobilization system into a graphite polysulfone membrane for amperometric immunosensors, Biosensors and Bioelectronics. 22 (2007) 965-972.
DOI: 10.1016/j.bios.2006.03.022
Google Scholar
[46]
J.Y. Wang, Y.Y. Xu, L.P. Zhu, et al., Amphiphilic ABA copolymers used for surface modification of polysulfone membranes, Part 1: Molecular design, synthesis, and characterization, Polymer. 49 (2008) 3256-3264.
DOI: 10.1016/j.polymer.2008.05.033
Google Scholar
[47]
Q. Huang, D. Paul, G. Seibig, Advances in solvent-free manufacturing of polymer membranes, Membrane Technology. 140 (2001) 6-9.
DOI: 10.1016/s0958-2118(01)80394-3
Google Scholar
[48]
D. Puglia, L. Valentini, J. Kenny, Analysis of the Cure Reaction of Carbon Nanotubes/Epoxy Resin Composites Through Thermal Analysis and Raman Spectroscopy, J. of Applied Polymer Science. 88 (2003) 452-458.
DOI: 10.1002/app.11745
Google Scholar
[49]
M. Cho, Sh. Bahadur, A study of the thermal, mechanical and tribological Properties of polyphenylene sulfide composites Reinforced with carbon nanotubes and carbon Nanofibers, Polymer science. (2004) 118-142.
DOI: 10.1007/s11249-006-9173-x
Google Scholar
[50]
A. Díez-Pascual, M. Naffakh, Synthesis and characterization of nitrated and aminated poly(phenylene sulfide) derivatives for advanced applications, Mater ChemPhys. 131 (2012) 605-614.
DOI: 10.1016/j.matchemphys.2011.10.025
Google Scholar
[51]
Ye.V. Filimonov, M.M. Nosova, Modern methods for forming prepregs based on carbon fibers, Sovremennyye materialy, tekhnika i tekhnologiya. (2013) 355-362.
Google Scholar
[52]
N.V. Antyufeyeva, P.L. Zhuravleva, et al., The effect of the degree of curing of the binder on the physicomechanical properties of carbon fiber and the microstructure of the interfacial layer of the carbon fiber/matrix, Klei, germetiki, tekhnologii. 12 (2014) 26-30.
Google Scholar
[53]
O.I. Karpovich, A.L. Narkevich, A.V. Dubina, Prepregs based on thermoplastic polymers and glass fabrics and promising areas of their application, Naukoyemkiye tekhnologii funktsional'nykh materialov. (2014) 42-43.
Google Scholar
[54]
S. Yumitori, D. Wang, F. Jones, The role of sizing resins in carbon fiber in forced polyethersulfone (PES), Composites. 7 (1994) 698-705.
DOI: 10.1016/0010-4361(94)90204-6
Google Scholar
[55]
K. Magniez, T. Chaffraix, В. Fox Toughening of a carbon-fiber composite using electrospun poly(hydroxyether of bisphenol A) nanofibrous membranes through inverse phase separation and inter-domain etherification, Materials. 4 (2011) 1967-1984.
DOI: 10.3390/ma4111967
Google Scholar
[56]
G. Li, P. Li, Y. Yu, Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers, Materials Letter. 62 (2008) 511-514.
DOI: 10.1016/j.matlet.2007.05.080
Google Scholar
[57]
G.S. Golovkin, A.K. Shibanov, M.I. Stepanova, Polymer composition material. Patent RU № 2057767 (1996).
Google Scholar
[58]
G.S. Golovkin, A.K. Shibanov, M.I. Stepanova, Method for appropriating carbon fiber for producing polysulphone carbon plastic. Patent RU № 2054015 (1996).
Google Scholar
[59]
A.M. Diez-Pascual, M. Naffakh, J.M. Gonzalez-Dominguez, et al., High performance PEEK/carbon nanotube composites compatibilized with poly(sulfones-I). Structure and thermal properties, Carbon. 48 (2010) 3485-3499.
DOI: 10.1016/j.carbon.2010.05.046
Google Scholar
[60]
Y.A. Gorbatkina, I.Y. Gorbunova, et al., Adhesion properties of compositions based on epoxy resin modified with polyetherimide or polysulfone, Mekhanika kompozitsionnykh materialov i konstruktsiy. 20 (2014) 207-218.
Google Scholar
[61]
P.A. Oyanguren, M.J. Galante, K.Р. Andromaque, et al., Development of bicontinuous morphologies in polysulfone-epoxyblends, Polymer. 40 (1999) 5249-5255.
DOI: 10.1016/s0032-3861(98)00742-3
Google Scholar
[62]
T.H. Yoon, J.D. Priddy, G.D. Lyle, Mechanism and morphological investigations of reactive polysulfone toughened epoxy networks, Macromolecules Symp. 168 (1995) 673-686.
DOI: 10.1002/masy.19950980158
Google Scholar
[63]
K. Yamanaka, T. Inoue, Structure development in epoxy resin modified with poly (ether sulphone), Polymer. 30 (1989) 662-667.
DOI: 10.1016/0032-3861(89)90151-1
Google Scholar
[64]
T. Yoon, B.S. Kim, D.S. Lee, Structure development via reaction-induced phase separation in tetrafunctional epoxy/polysulfone blends, J. Applied Polymer Science. 66 (1997) 2233-2242.
DOI: 10.1002/(sici)1097-4628(19971219)66:12<2233::aid-app4>3.0.co;2-h
Google Scholar
[65]
D. Ratna, M. Patri, B.C. Chakraborty, Amine-terminated polysulfone as modifier for epoxy resin, J. Applied Polymer Science. 65 (1997) 901-907.
DOI: 10.1002/(sici)1097-4628(19970801)65:5<901::aid-app7>3.0.co;2-r
Google Scholar
[66]
B.G. Min, J.H. Hodgkin, Z.H. Stachurski, Reaction mechanisms, microstructure and fracture properties of thermoplastic polysulfone-modified epoxy resin, J. Applied Polymer Science. 50 (1993) 1065-1073.
DOI: 10.1002/app.1993.070500615
Google Scholar
[67]
C.B. Bucknall, I.K. Partridge, Addition of poly(ether sulfone) to epoxy-resins, British Polymer Journal. 15 (1983) 71-75.
DOI: 10.1002/pi.4980150117
Google Scholar
[68]
C.B. Bucknall, I.K. Partridge, Phase separation in epoxy-resins containing poly(ether sulfone), Polymer. 24 (1983) 639-644.
DOI: 10.1016/0032-3861(83)90120-9
Google Scholar