Glass-Filled Composite Materials Based on Polyarylene Ether Sulfones

Article Preview

Abstract:

This article provides a literature overview of glass-filled polyarylene sulfones. The main properties of polyarylene ether sulfones and applications are given. The industrially produced brands of glass-filled composites and their properties are shown. A problem of low interfacial interaction between polymer and fiberglass and the ways to increase was considered. Also the results of development of glass-filled composites based on polyphenylene sulfone for using in additive technologies, in particular 3D-printing by FDM method are shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

583-590

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Garcia, J.I. Eguiazaball, J. Nazabal, Processability, morphology and mechanical properties of glass fiber reinforced poly(ether sulfone) modified by a liquid crystalline copolyester, J. Polym. compos. 24 (2003) 686-96.

DOI: 10.1002/pc.10062

Google Scholar

[2] K.-U. Buller, L.M. Swamps, Heat- and heat-resistant polymers, Moscow, (1984).

Google Scholar

[3] A.F. Nikolaev, Technology of plastic masses, Leningrad, (1977).

Google Scholar

[4] V.V. Korshak, Plastic technology, Moscow, (1985).

Google Scholar

[5] E.M. Steinberg, E.A. Sergeeva, L.A. Zenitova, I.Sh. Abdullin, Application and production of polysulfone. Overview, Bulletin of Kazan Technological University. 15 (2012) 168-171.

Google Scholar

[6] E.V. Rzhevskaya, Development of carbon and glass-filled compositional materials for 3d-printing based on polyphenylene sulphone: dissertation, Nalchik, (2019).

Google Scholar

[7] Information on https://www.industrialspec.com.

Google Scholar

[8] J.C. Salamone, A. Ticktin, K. Elbel-Wiser, Poly(ether sulfone)s (properties, applications and trends), Polymeric Materials Encyclopedia. (1996) 5936-5946.

Google Scholar

[9] J.I. Kurdanova, Synthesis and properties of polyphenylene sulfone and its copolymers for use in additive technologies: dissertation, Nalchik, (2017).

Google Scholar

[10] P. Le-Clech, B Jefferson, S.J. Judd, Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bi-oreactor, J. Membrane Sci. 218 (2003) 117-129.

DOI: 10.1016/s0376-7388(03)00164-9

Google Scholar

[11] T. Ueda, K. Hata, Y. Kikuoka, O. Seinoet, Effects of aeration on suction pres-sure in a submerged membrane bioreactor, Water Res. 31 (1997) 489-494.

DOI: 10.1016/s0043-1354(96)00292-8

Google Scholar

[12] A. Saleem, L. Frormann, A. Iqbal, High performance thermoplastic composites: Study on the mechanical, thermal, and electrical resistivity properties of carbon fiber-reinforced polyetheretherketone and polyethersulphone, J. Polymer Compos. 28 (2007) 785-796.

DOI: 10.1002/pc.20297

Google Scholar

[13] D. Tyszler, R.G. Zytner, A. Batsch, A. Brügger, S. Geissler, H. Zhou, D. Klee, T. Melin, Reduced fouling tendency of ultrafi ltration membrane in wastewater treatment by plasma modifi cation, Desalination. 189 (2006) 119-129.

DOI: 10.1016/j.desal.2005.06.019

Google Scholar

[14] J. Kochana, T. Wintgensa, J.E. Wongb, T. Melina, Polyelectrolyte-modified polyethersulfone ultrafi ltration membranes for wastewater treatment applications, Desalination and Water Treatment. 9 (2009) 175-180.

DOI: 10.5004/dwt.2009.768

Google Scholar

[15] D.M. Riggs, R.J. Shuford, R.W. Lewis, G. Lubin, Graphite Fibers and Composites, Handbook of Composites, Boston, (1982).

DOI: 10.1007/978-1-4615-7139-1_11

Google Scholar

[16] C. Barth, M.C. Gonclaves, A.T.N. Pires, J. Roeder, B.A. Wolf, Asymmetric poly-sulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance, J. Membrane Sci. 169 (2000) 287-299.

DOI: 10.1016/s0376-7388(99)00344-0

Google Scholar

[17] F. Locatelli, S. Di Filippo, C. Manzoni, Efficiency in hemodialysis with polyethersulfone membrane (DIAPES), Contributions to nephrology. 138 (2003) 55-58.

DOI: 10.1159/000067392

Google Scholar

[18] L. Mocé-Llivina, J. Jofre, M. Muniesa, Comparison of polyvinylidene fluoride and polyether sulfone membranes in filtering viral suspensions, Virological Methods. 109 (2003) 99-101.

DOI: 10.1016/s0166-0934(03)00046-6

Google Scholar

[19] A. Hunter, C.W. Archer, P.S. Walker, G. Blunn, Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use, Biomaterials. 16 (1995) 287-295.

DOI: 10.1016/0142-9612(95)93256-d

Google Scholar

[20] D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials. 21 (2000) 2529-2543.

DOI: 10.1016/s0142-9612(00)00121-6

Google Scholar

[21] F.R. Rose, R.O. Oreffo, Bone tissue engineering: Hope vs. hype, Biochem. Biophys. Res. Commun. 292 (2002) 1-7.

Google Scholar

[22] J.Y. Ho, T. Matsuura, J.P. Santerre, The effect of fluorinated surface modifying macromolecules on the surface morphology of polyethersulfone membranes, J. Biomaterials Sci. 11 (2000) 1085-1104.

DOI: 10.1163/156856200743599

Google Scholar

[23] S. Gupta, J.R. Chowdhury, Therapeutic potential of hepatocyte transplantation, Seminars in Cell and Developmental Biology. 13 (2002) 439-446.

DOI: 10.1016/s1084952102001325

Google Scholar

[24] A. Kinasiewicz, J. Kawiak, A. Werynski, 3D-Matrigel culture improves differentiated functions of HepG2 cells in vitro, Biocybernetics and Biomed. Eng. 26 (2006) 47-54.

Google Scholar

[25] L. Flynn, P.D. Dalton, M.S. Shoichet, Fiber templating of poly(2-hydroxyethylmethacrylate) for neural tissue engineering, Biomaterials. 24 (2003) 4265-4272.

DOI: 10.1016/s0142-9612(03)00334-x

Google Scholar

[26] S. Blacher, V. Maquet, F. Schils, D. Martin, J. Schoenen, G. Moonen, R. Jerome, J.P. Pirard, Image analysis of the axonal ingrowth into poly(D,L-lactide) porous scaffolds in relation to the 3D porous structure, Biomaterials. 24 (2003) 1033-1040.

DOI: 10.1016/s0142-9612(02)00423-4

Google Scholar

[27] M. Dodla, R. Bellamkonda, Anisotropic scaffolds facilitate enhanced neurite extension in vitro, J. Biomed. Mater. Res. Part A. 78 (2006) 213-221.

DOI: 10.1002/jbm.a.30747

Google Scholar

[28] O.B. Searle, R.H. Pfeiffer, Victrex® poly(ethersulfone) (PES) and Victrex® poly(etheretherketone) (PEEK), J. Polymer Eng. & Sci. 25 (1985) 474-476.

DOI: 10.1002/pen.760250808

Google Scholar

[29] A. Saleem, L. Frormann, A. Iqbal, High performance thermoplastic composites: Study on the mechanical, thermal, and electrical resistivity properties of carbon fiber-reinforced polyetheretherketone and polyethersulphone, J. Polymer Compos. 28 (2007) 785-796.

DOI: 10.1002/pc.20297

Google Scholar

[30] M.G. Bader, W. Smith, A.B. Isham, Delaware composites design encyclopedia, Delawa, (1990).

Google Scholar

[31] Information on http://iwww.plasticsportal.com.

Google Scholar

[32] Information on https://www.sabic.com.

Google Scholar

[33] R.R. Gallucci High modulus poly(ether sulfone) compositions with improved impact, Patent U.K. 1371686 (2002).

Google Scholar

[34] D. Aciemo, F.P. La Mantia, Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends, Toronto, (1993).

Google Scholar

[35] D. Aciemo, A.A. Comer, Rheology and processing of liquid crystal polymers, London, (1996).

Google Scholar

[36] D.H. Schultz, J.E. Glass, Polymers as Rheology Modifiers, Washington, (1991).

Google Scholar

[37] M. Garcia, J.I. Eguiazh, J. Nazbal, Processability, morphology and mechanical properties of glass fiber reinforced poly(ether sulfone) modified by a liquid crystalline copolyester, J. Polymer Compos. 24 (2003) 686-696.

DOI: 10.1002/pc.10062

Google Scholar

[38] K. Zhang, G. Zhang, B. Liu, X. Wang, Sh. Long, J. Yang, Effect of aminatedpolyphenylene sulfide on the mechanical properties of short carbon fiber reinforced polyphenylene sulfide composites, J. Compos. Sci. and Technol. 98 (2014) 57-63.

DOI: 10.1016/j.compscitech.2014.04.020

Google Scholar

[39] T.V. Brantseva, Yu.A. Gorbatkina, V. Dutschk, K. Schneider, M.L. Kerber, Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fibre com-posites. III. Properties of the cured blends and their structures in the polymer/fibre interphase, J. Adhes. Sci. Technol. 18 (2004) 1309-1323.

DOI: 10.1163/1568561041588183

Google Scholar

[40] M. Aurilia, L. Sorrentino, L. Sanguigno, S. Iannace, Nanofilled polyethersulfone as matrix for continuous glass fibers composites, Mech. Properties and Solvent Resistance Advances in Polymer Technol. 29 (2010) 146-160.

DOI: 10.1002/adv.20187

Google Scholar

[41] E. Kroll, D. Artzi, Enhancing aerospace engineering students' learning with 3D printing wind-tunnel models, Rapid Prototyping J. 17 (2011) 393-402.

DOI: 10.1108/13552541111156522

Google Scholar

[42] R. Anitha, S. Arunachalam, P. Radhakrishnan, Critical parameters influencing the quality of prototypes in fused deposition modeling, J. of Mater. Processing Technol. 118 (2001) 385-388.

DOI: 10.1016/s0924-0136(01)00980-3

Google Scholar

[43] Information on http://isicad.ru.

Google Scholar

[44] M.A. Zlenko, M.V. Nagaytsev, V.M. Dovbysh, Additive technologies in mechanical engineering, Moscow, (2015).

Google Scholar

[45] G.P. Kotelnikov, A.V. Kolsanov, A.N. Nikolaenko, N.V. Popov, Application of 3D-modeling and additive technologies in personalized medicine, Information on http://eesg.ru/uploads/media.

Google Scholar

[46] S. Ahn, M. Montero, D. Odell; S. Roundy; P.K. Wright Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyping J. 8 (2003) 248-257.

DOI: 10.1108/13552540210441166

Google Scholar

[47] The main trends of the Russian market of metal powders for additive technologies, Additive Technol. J. 1 (2020) Information on https://additiv-tech.ru/publications.

Google Scholar

[48] X. Tian, T. Liu, Ch. Yang, Q. Wang, D. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, J. Compos.: Part A. 88 (2016) 198-205.

DOI: 10.1016/j.compositesa.2016.05.032

Google Scholar

[49] Ultra-Performance 3D Printing Filament, Information on http://www.3dxtech.com.

Google Scholar

[50] RTP 4300 S-1010, Information on https://omnexus.specialchem.com.

Google Scholar

[51] A.L. Slonov, A.A. Khashirov, A.A. Zhansitov, E.V. Rzhevskaya, S.Yu Khashirova, The influence of the 3D-printing technology on the physical and mechanical properties of polyphenylene sulfone, Rapid Prototyping J. 24 (2018) 1124-1130.

DOI: 10.1108/rpj-03-2017-0045

Google Scholar

[52] A.L. Slonov, A.A. Khashirov, A.A. Zhansitov, E.V. Rzhevskaya, I.V. Musov, S.Yu. Khashirova, Mechanical properties of polyphenylene sulfone obtained by the 3D-printing method, Mater. Sci. Forum. 935 (2018) 21-26.

DOI: 10.4028/www.scientific.net/msf.935.21

Google Scholar

[53] A.L. Slonov A.A. Khashirov, A.A. Zhansitov, E.V. Rzhevskaya, I.V. Musov, S.Yu. Khashirova, Physical and mechanical properties of samples of polyphenylene sulfone obtained by 3D-printing technology, New polymer composite materials, Nalchik, 2018, pp.203-208.

DOI: 10.4028/www.scientific.net/msf.935.21

Google Scholar

[54] E.V. Rzhevskaya, A.L. Slonov, H.V. Musov, A.F. Tlupov, Sh.A. Afaunov, S.Yu. Khashirova, Investigation of the mechanical properties of fiber-filled materials based on polyphenylene sulfone Proceedings of the Kabardino-Balkarian State University. 8 (2018) 49-54.

DOI: 10.4028/www.scientific.net/msf.935.21

Google Scholar

[55] A.L. Slonov, I.V. Musov, A.A. Zhansitov, E.V. Rzhevskaya, S.Yu. Khashirova, Composite material, Patent RF 2686916 (2019).

DOI: 10.3390/polym12051056

Google Scholar

[56] A.L. Slonov A.A. Zhansitov, E.V. Rzhevskaya, D.M. Khakulova, H.H. Sapaev, R.A. Shetov, S.Yu. Khashirova, The effect of the length and concentration of carbon and glass fibers on the properties of polyphenylene sulfone, Fiber Chemistry 4 (2018) 98-102.

DOI: 10.1007/s10692-019-09998-z

Google Scholar