Composite Materials Based on Natural Polysaccharides and Polyguanidines

Article Preview

Abstract:

Composite materials based on natural polysaccharides and polyguanidines are considered. The synthesis mechanisms and structural features of composite materials based on polyguanidines and polysaccharides are discussed. The issues of the relationship of their structure with antimicrobial activity are highlighted. It has been shown that the modification of polysaccharides with guanidine-containing compounds makes it possible to give them bactericidal properties, increase strength and solubility, and is a promising direction for the development of new-generation drugs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

577-582

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Ying, D. Yumin, Y. Jianhong, F. John, X. Kennedy, L. Wang, Synthesis, characterization and antibacterial activity of guanidinylated chitosan, Carbohydrate Polymers. 67 (2007) 66-72.

DOI: 10.1016/j.carbpol.2006.04.015

Google Scholar

[2] J. Zhishen, Sh. Dongfeng, X. Weiliang, Synthesis and antibacterial activities of quaternary ammonium salt of chitosan, Carbohydrate research. 333 (2001) 1-6.

Google Scholar

[3] X. Yajun, L. Xiaofei, Ch. Qiang Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity, Carbohydrate polymers. 69 (2007) 142-147.

DOI: 10.1016/j.carbpol.2006.09.010

Google Scholar

[4] X.F. Liu, Y.L. Guan, D.Z. Yang, Antibacterial action of chitosan and carboxymethylated chitosan / // Journal of Applied Polymer Science. 79 (2001) 1324-1335.

DOI: 10.1002/1097-4628(20010214)79:7<1324::aid-app210>3.0.co;2-l

Google Scholar

[5] X. Wenming, X. Peixin, W. Wei, Preparation and antibacterial activity of a water-soluble chitosan derivative, Carbohydrate Polymers. 50 (2002) 35-40.

DOI: 10.1016/s0144-8617(01)00370-8

Google Scholar

[6] X. Zhao, Q. Zhen-Zhen, H. Jin-Xin, Preparation of Chitosan Biguanidine Hydrochloride and Application in Antimicrobial Finish of Wool Fabric, Journal of Engineered Fibers and Fabrics. 5 (2010) 16-24.

DOI: 10.1177/155892501000500303

Google Scholar

[7] S. Sun, Q. An, X. Li, L. Qian, B. He, H. Xiao, Synergistic effects of chitosanguanidine complexes on enhancing antimicrobial activity and wet-strength of paper Bioresour, Technol. (2010) 5693.

DOI: 10.1016/j.biortech.2010.02.046

Google Scholar

[8] L. Qian, X. Li, Sh. Sun, H. Xiao, Preparation of Guanidine Polymer and Its Complex as Dual-Functional Agent for Cellulose Fibre-Based Hygiene Products, Journal of Biobased Materials and Bioenergy. 5 (2011) 219-224.

DOI: 10.1166/jbmb.2011.1137

Google Scholar

[9] L. Ping, G. Yangyang, S. Zijia, Ch. Dan, G. Ge, D. Alideertu, Synthesis, Characterization, and Bactericidal Evaluation of Chitosan/Guanidine Functionalized Graphene Oxide Composites, Molecules. 22 (2017) 12.

DOI: 10.3390/molecules22010012

Google Scholar

[10] Y.K. Mathurin, R. Koffi-Nevry, S.T. Guéhi, K. Tano, M.K. Oulé, Antimicrobial activities of polyhexamethylene guanidine hydrochloride-based disinfectant against fungi isolated from cocoa beans and reference strains of bacteria, J. Food Protect. 75 (2012) 1167-1171.

DOI: 10.4315/0362-028x.jfp-11-361

Google Scholar

[11] L. Qian, Y. Guan, B. He, H. Xiao, Modified guanidine polymers: synthesis and antimicrobial mechanism revealed by AFM, Polymer. 49 (2008) 2471.

DOI: 10.1016/j.polymer.2008.03.042

Google Scholar

[12] X. Duan, Y. Jiang, L. Feng, F. Wu, Use of polyhexamethylene guanidine hydrochloride as preservative for preventing and controlling citrus sour rot and its application. Patent USA № 0245079 (2013).

Google Scholar

[13] T.N. Yudanova, I.F. Skokova, L.I. Gavrikova, L.S. Gal'braikh, Fabrication of textile materials with a combined biological effect, FibreChem. 31 (1999) 90-95.

DOI: 10.1007/bf02358629

Google Scholar

[14] O. Kukharenko, J.-F. Bardeau, I. Zaets, L. Ovcharenko, O. Tarasyuk, S. Porhyn, I. Mischenko, A. Vovk, S. Rogalsky, N. Kozyrovska, Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride, European Polymer Journal. 60 (2014) 247-254.

DOI: 10.1016/j.eurpolymj.2014.09.014

Google Scholar

[15] Q. Liying, D. Chao, L. Xiangtao, X. Huining, Polyelectrolyte complex containing antimicrobial guanidine-based polymer and its adsorption on cellulose fibers, International Journal of the Biology, Chemistry, Physics, and Technology of Wood. 68 (2014) 158.

Google Scholar

[16] A. Renken, D. Hunkeler, Polymethylene-co-guanidine based capsules: A mechanistic study of the formation using alginate and cellulose sulphate, Journal of Microencapsulation Micro and Nano Carriers. 24 (2007) 20-39.

DOI: 10.1080/02652040601058418

Google Scholar

[17] R.S. Blackburn, A. Harvey, L.L. Kettle, J.D. Payne, S.J. Russell, Sorption of poly(hexamethylenebiguanide) on cellulose: mechanism of binding and molecular recognition, Langmuir. 22 (2006) 5636-5644.

DOI: 10.1021/la053002b

Google Scholar

[18] K. Liu, Preparation of guanidine-modified starch for antimicrobial paper, Journal of Bioresources and Bioproducts. 1 (2016) Р. 3-6.

DOI: 10.21967/jbb.v1i1.39

Google Scholar

[19] Z.A. Tlupova, A.A. Zhansitov, S.A. Elcsheparova, S.Yu. Khashirova, New water-soluble bactericidal materials based on dialdehyde cellulose and diallyl guanidine derivatives, Fundamental research. 11 (2012) 970-974.

Google Scholar

[20] A.A. Khashirov, A.A. Zhansitov, S.Y. Khashirova, G.E. Zaikov, New biologically active composite materials on the basis of dialdehyde cellulose. Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. 2014, pp.550-553.

DOI: 10.1063/1.4876900

Google Scholar

[21] S.S. Khashirova, A.A. Zhansitov, Z.Y. Isupova, S.A. Elcheparova, S.Y. Khashirova, Acrylate and methacrylate guanidine-ionic liquids for dissolution of cellulose, Materials Science Forum. 935 (2018) 45-48.

DOI: 10.4028/www.scientific.net/msf.935.45

Google Scholar

[22] Z.Y. Isupova, S.Y. Khashirova, A.A. Zhansitov, V.A. Kvashin, E.V. Khakyasheva, Y.I. Musaev, Y.A. Malkanduev, New metal complexes derived from guanidine-containing dialdehyde cellulose, Fibre Chemistry. 49 (2018) 437-441.

DOI: 10.1007/s10692-018-9916-0

Google Scholar

[23] Z.Yu. Isupova, S.Yu. Khashirova, A.A. Zhansitov, S.A. Elcheparova, Z.L. Beslaneeva, I.V. Dolbin, Study of complexes of polymethacrylate guanidine with magnesium ions, Fibre Chemistry. 50 (2018) 49-52.

DOI: 10.1007/s10692-018-9928-9

Google Scholar

[24] Z.Yu. Isupova, Synthesis and study of composite polymer metal complexes based on guanidine polymethacrylate and cellulose dialdehyde with iron (II) ions, Fundamental research. 10 (2018) 12-17.

DOI: 10.17513/fr.42273

Google Scholar

[25] Z.Y. Isupova, A.A. Zhansitov, S.S. Khashirova, S.Y. Khashirova, Spectrophotometric study of complex compounds of polyacrylate and polymethacrylate of guanidine, and also of composites on their basis with Fe (II) ions, Materials Science Forum. 935 (2018) 1-4.

DOI: 10.4028/www.scientific.net/msf.935.1

Google Scholar