[1]
N. Demetris, K. Antonis, S. Pericles, P. Micheal, Experimental field investigation of impact and blast load resistance of ultra-high performance fibre reinforce cementious composites (UHPFRCCs), Construction and Building Materials. 95 (2015) 566-574.
DOI: 10.1016/j.conbuildmat.2015.07.141
Google Scholar
[2]
R. Castedo, P. Segarra, A. Alanon, L.M. Lopez, A.P. Santos, J.A. Sanchidrian, Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation, International Journal of Impact Engineering, 86 (2015) 1419-1426.
DOI: 10.1016/j.ijimpeng.2015.08.004
Google Scholar
[3]
G. Thiagarajan, A. V. Kadambi, S. Robert, C. F. Johnson, Experimental and finite element analysis of doubly reinforced concrete wall subjected to blast loads, International Journal of Impact Engineering, 75 (2015) 162–173.
DOI: 10.1016/j.ijimpeng.2014.07.018
Google Scholar
[4]
U.J. Alengaram, N.H.W. Mohottige, C. Wu, M.Z. Jumaat, Y.S. Poh, Z. Wang, Response of oil palm shell concrete subjected to quasi-static and blast loads, Construction and Building Materials, 116 (2016) 391-402.
DOI: 10.1016/j.conbuildmat.2016.04.103
Google Scholar
[5]
J. Li, C. Wu, H. Hao, Y. Su, X. Z Li, A study of concrete slabs with steel wire mesh reinforcement under close-in explosive load, International Journal of Impact Engineering. 110 (2017) 242-254.
DOI: 10.1016/j.ijimpeng.2017.01.016
Google Scholar
[6]
L. Jian, W. Chengqing, L. Chunguang, D. Wenxue, S. Yu, L. Jun, C. Ning, Z. Fan, D. Lan, M. Qingfei, P. Jiabao, Blast testing of high performance geopolymer composite walls reinforced with steel wire mesh and aluminium foam, Construction and Building Materials, 197 (2019) 533-547.
DOI: 10.1016/j.conbuildmat.2018.11.207
Google Scholar
[7]
Y. Fei, F. Wanhui, J. Lin, Y. Bing, C. De, Experimental and numerical study of rubber concrete slabs steel reinforcement under close-in blast loading, Construction and Building Materials, 198 (2019) 423-436.
DOI: 10.1016/j.conbuildmat.2018.11.248
Google Scholar
[8]
D. Yan, G. Chen, J. Baird, H. Yin, M. Koenigstein, Blast test of full-Size wall barriers reinforced with enamel-coated steel rebar, Proceedings of the Structure Congress, (2011) 1538-1551.
DOI: 10.1061/41171(401)134
Google Scholar
[9]
H. Radek, F. Marek, F. Josef, Influence of barrier material and barrier shape on blast mitigation, Construction and Building Material, 120 (2016) 54-64.
DOI: 10.1016/j.conbuildmat.2016.05.078
Google Scholar
[10]
L. S. Chao, L. Dan, Y. Bo, Experimental study and numerical simulation on damage assessment of reinforced concrete beams, International Journal of Impact Engineering, 132 (2019).
Google Scholar
[11]
A. Dua, A. Braimah, M. Kumar, Experimental and numerical investigation of rectangular reinforced concrete T columns under contact explosion effects, Engineering Structure, 205 (2020).
DOI: 10.1016/j.engstruct.2019.109891
Google Scholar
[12]
TNB, Contract No. TNB 586/2005 Supply, erect & commissioning of 132 kV and 11 kV switchgear and ancillary equipment complete with associated civil works at transmission main intake substation in eastern region, (2005).
Google Scholar
[13]
TNB, Contract No. TNB 342/2006 Supply, erect & commissioning of 132 kV and 33 kV switchgear and ancillary equipment and associated civil works for PMU Teluk Kalong, (2006).
Google Scholar
[14]
L.A. Wyllie, R.W. Laplante, The designer's responsibility for rebar design, Concrete Reinforcing Steel Institute, 1 (2003) 1–16.
Google Scholar