[1]
N. A. K. Hafizah et al., Kenaf Fiber Reinforced Polymer Composites for Strengthening RC Beams, Journal of Advanced Concrete Technology, 12 (2014), 167–77.
DOI: 10.3151/jact.12.167
Google Scholar
[2]
S. C. Chin, N. Shafiq, and M. F. Nuruddin, Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: Experiment and 2D Nonlinear Finite Element Analysis, Research Journal of Applied Sciences, Engineering and Technology, 4 (2012), 1172–80.
Google Scholar
[3]
F. Wang, M. Yang, S. Zhou, S. Ran, and J. Zhang, Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers, J. Appl. Polym. Sci., 135 (2018) 1–9, (2018).
DOI: 10.1002/app.46148
Google Scholar
[4]
M. A. Alam and K. Al Riyami, Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates, Constr. Build. Mater., 162 (2018) 683–696.
DOI: 10.1016/j.conbuildmat.2017.12.011
Google Scholar
[5]
T. Sen and H. N. J. Reddy, Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure, Adv. Mater. Sci. Eng., 2013 (2013) 1–15.
DOI: 10.1155/2013/128158
Google Scholar
[6]
S. P. Cestari, D. de F. Silva Freitas, D. C. Rodrigues, and L. C. Mendes, Recycling processes and issues in natural fiber-reinforced polymer composites, Green Compos. Automot. Appl., (2018) 285–299.
DOI: 10.1016/b978-0-08-102177-4.00012-4
Google Scholar
[7]
M. A. Alam, K. Alriyami, Z. C. Muda, and M. Z. Jumaat, Hybrid kenaf fibre composite plates for potential application in shear strengthening of reinforced concrete structure, Indian J. Sci. Technol., 9 (2016).
DOI: 10.17485/ijst/2016/v9i6/77483
Google Scholar
[8]
M. S. Islam, J. S. Church, and M. Miao, Effect of removing polypropylene fibre surface finishes on mechanical performance of kenaf/polypropylene composites, Compos. Part A Appl. Sci. Manuf., 42 (2011) 1687–1693.
DOI: 10.1016/j.compositesa.2011.07.023
Google Scholar
[9]
S. A. H. Roslan, Z. A. Rasid, and M. Z. Hassan, Bamboo reinforced polymer composite - A comprehensive review, IOP Conf. Ser. Mater. Sci. Eng., 344 (2018).
DOI: 10.1088/1757-899x/344/1/012008
Google Scholar
[10]
K. Okubo, T. Fujii, and E. T. Thostenson, Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose, Compos. Part A Appl. Sci. Manuf., 40 (2009) 469–475.
DOI: 10.1016/j.compositesa.2009.01.012
Google Scholar
[11]
L. Osorio, E. Trujillo, A. W. Van Vuure, and I. Verpoest, Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/ epoxy composites, J. Reinf. Plast. Compos., 30 (2011) 396–408.
DOI: 10.1177/0731684410397683
Google Scholar
[12]
D. Ren, Z. Yu, X. Zhang, H. Wang, H. Wang, and Y. Yu, Quantitative characterization of the interface between bamboo fiber and polypropylene with pull-out test and nanomechanical imaging," J. Mater. Sci., 52 (2017) 1296–1307.
DOI: 10.1007/s10853-016-0425-3
Google Scholar
[13]
P. Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, Extraction and preparation of bamboo fibre-reinforced composites, Mater. Des., 63 (2014) 820–828.
DOI: 10.1016/j.matdes.2014.06.058
Google Scholar
[14]
K. M. M. Rao and K. M. Rao, Extraction and tensile properties of natural fibers: Vakka, date and bamboo," Compos. Struct., 77 (2007) 288–295.
DOI: 10.1016/j.compstruct.2005.07.023
Google Scholar
[15]
K. Okubo, T. Fujii, and Y. Yamamoto, Development of bamboo-based polymer composites and their mechanical properties, Compos. Part A Appl. Sci. Manuf., 35 (2004) 377–383.
DOI: 10.1016/j.compositesa.2003.09.017
Google Scholar
[16]
S. Biswas, Q. Ahsan, A. Cenna, M. Hasan, and A. Hassan, Physical and mechanical properties of jute, bamboo and coir natural fiber, Fibers Polym., 14 (2013) 1762–1767.
DOI: 10.1007/s12221-013-1762-3
Google Scholar
[17]
M. Rafiquzzaman, M. Islam, H. Rahman, S. Talukdar, and N. Hasan, Mechanical property evaluation of glass–jute fiber reinforced polymer composites, Polym. Adv. Technol., 27 (2016) 1308–1316.
DOI: 10.1002/pat.3798
Google Scholar
[18]
M. M. Marliana et al., Flame retardancy, Thermal and mechanical properties of Kenaf fiber reinforced Unsaturated polyester/Phenolic composite, Fibers Polym., 17 (2016) 902–909.
DOI: 10.1007/s12221-016-5888-y
Google Scholar
[19]
S. C. Chin, K. F. Tee, F. S. Tong, H. R. Ong, and J. Gimbun, Thermal and mechanical properties of bamboo fiber reinforced composites, Mater. Today Commun., 23 (2020) 100876.
DOI: 10.1016/j.mtcomm.2019.100876
Google Scholar
[20]
F. S. Tong et al., Influence of Alkali Treatment on Physico-Chemical Properties of Malaysian Bamboo Fiber: a Preliminary Study, Malaysian J. Anal. Sci., 22 (2018) 143–150.
DOI: 10.17576/mjas-2018-2201-18
Google Scholar
[21]
M. Yang et al., Thermal and mechanical performance of unidirectional composites from bamboo fibers with varying volume fractions, Polym. Compos., 40 (2019) 3929–3937.
DOI: 10.1002/pc.25253
Google Scholar
[22]
A. C. Manalo, E. Wani, N. A. Zukarnain, W. Karunasena, and K. T. Lau, Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites, Compos. Part B Eng., 80 (2015) 73–83.
DOI: 10.1016/j.compositesb.2015.05.033
Google Scholar
[23]
J. K. Huang and W. Bin Young, The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites, Compos. Part B Eng., 166 (2019) 272–283.
DOI: 10.1016/j.compositesb.2018.12.013
Google Scholar
[24]
ASTM D3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, United States, 15, (2002).
Google Scholar
[25]
Technical Data Sheet, MFE-711 Epoxy Vinyl Ester Resin, Tullamarine, Australia, 1–2, (2019).
Google Scholar
[26]
Product Imformation, D.E.R.TM 331 Liquid Epoxy Resin, United States, Form No. 296-01408-0109X-TD.
Google Scholar
[27]
M. A. Alam, A. Hassan, and Z. C. Muda, Development of kenaf fibre reinforced polymer laminate for shear strengthening of reinforced concrete beam, Mater. Struct. Constr., 49 (2016) 795–811.
DOI: 10.1617/s11527-015-0539-0
Google Scholar
[28]
ASTM D790-03, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, West Conshohocken, United States, (2003).
DOI: 10.1520/d0790-15e01
Google Scholar
[29]
R. Rahman, S. Zhafer, and F. Syed, Tensile properties of natural and synthetic fiber-reinforced polymer composites, Elsevier Ltd (2019).
DOI: 10.1016/b978-0-08-102292-4.00005-9
Google Scholar
[30]
X. Li and F. Wang, Effect of the statistical nature of fiber strength on the predictability of tensile properties of polymer composites reinforced with bamboo fibers: Comparison of linear- and power-law Weibull models, Polymers (Basel)., 8 (2016).
DOI: 10.3390/polym8010024
Google Scholar