Performance of Bamboo Fiber Reinforced Composites: Mechanical Properties

Article Preview

Abstract:

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

284-293

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. A. K. Hafizah et al., Kenaf Fiber Reinforced Polymer Composites for Strengthening RC Beams, Journal of Advanced Concrete Technology, 12 (2014), 167–77.

DOI: 10.3151/jact.12.167

Google Scholar

[2] S. C. Chin, N. Shafiq, and M. F. Nuruddin, Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: Experiment and 2D Nonlinear Finite Element Analysis, Research Journal of Applied Sciences, Engineering and Technology, 4 (2012), 1172–80.

Google Scholar

[3] F. Wang, M. Yang, S. Zhou, S. Ran, and J. Zhang, Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers, J. Appl. Polym. Sci., 135 (2018) 1–9, (2018).

DOI: 10.1002/app.46148

Google Scholar

[4] M. A. Alam and K. Al Riyami, Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates, Constr. Build. Mater., 162 (2018) 683–696.

DOI: 10.1016/j.conbuildmat.2017.12.011

Google Scholar

[5] T. Sen and H. N. J. Reddy, Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure, Adv. Mater. Sci. Eng., 2013 (2013) 1–15.

DOI: 10.1155/2013/128158

Google Scholar

[6] S. P. Cestari, D. de F. Silva Freitas, D. C. Rodrigues, and L. C. Mendes, Recycling processes and issues in natural fiber-reinforced polymer composites, Green Compos. Automot. Appl., (2018) 285–299.

DOI: 10.1016/b978-0-08-102177-4.00012-4

Google Scholar

[7] M. A. Alam, K. Alriyami, Z. C. Muda, and M. Z. Jumaat, Hybrid kenaf fibre composite plates for potential application in shear strengthening of reinforced concrete structure, Indian J. Sci. Technol., 9 (2016).

DOI: 10.17485/ijst/2016/v9i6/77483

Google Scholar

[8] M. S. Islam, J. S. Church, and M. Miao, Effect of removing polypropylene fibre surface finishes on mechanical performance of kenaf/polypropylene composites, Compos. Part A Appl. Sci. Manuf., 42 (2011) 1687–1693.

DOI: 10.1016/j.compositesa.2011.07.023

Google Scholar

[9] S. A. H. Roslan, Z. A. Rasid, and M. Z. Hassan, Bamboo reinforced polymer composite - A comprehensive review, IOP Conf. Ser. Mater. Sci. Eng., 344 (2018).

DOI: 10.1088/1757-899x/344/1/012008

Google Scholar

[10] K. Okubo, T. Fujii, and E. T. Thostenson, Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose, Compos. Part A Appl. Sci. Manuf., 40 (2009) 469–475.

DOI: 10.1016/j.compositesa.2009.01.012

Google Scholar

[11] L. Osorio, E. Trujillo, A. W. Van Vuure, and I. Verpoest, Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/ epoxy composites, J. Reinf. Plast. Compos., 30 (2011) 396–408.

DOI: 10.1177/0731684410397683

Google Scholar

[12] D. Ren, Z. Yu, X. Zhang, H. Wang, H. Wang, and Y. Yu, Quantitative characterization of the interface between bamboo fiber and polypropylene with pull-out test and nanomechanical imaging," J. Mater. Sci., 52 (2017) 1296–1307.

DOI: 10.1007/s10853-016-0425-3

Google Scholar

[13] P. Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, Extraction and preparation of bamboo fibre-reinforced composites, Mater. Des., 63 (2014) 820–828.

DOI: 10.1016/j.matdes.2014.06.058

Google Scholar

[14] K. M. M. Rao and K. M. Rao, Extraction and tensile properties of natural fibers: Vakka, date and bamboo," Compos. Struct., 77 (2007) 288–295.

DOI: 10.1016/j.compstruct.2005.07.023

Google Scholar

[15] K. Okubo, T. Fujii, and Y. Yamamoto, Development of bamboo-based polymer composites and their mechanical properties, Compos. Part A Appl. Sci. Manuf., 35 (2004) 377–383.

DOI: 10.1016/j.compositesa.2003.09.017

Google Scholar

[16] S. Biswas, Q. Ahsan, A. Cenna, M. Hasan, and A. Hassan, Physical and mechanical properties of jute, bamboo and coir natural fiber, Fibers Polym., 14 (2013) 1762–1767.

DOI: 10.1007/s12221-013-1762-3

Google Scholar

[17] M. Rafiquzzaman, M. Islam, H. Rahman, S. Talukdar, and N. Hasan, Mechanical property evaluation of glass–jute fiber reinforced polymer composites, Polym. Adv. Technol., 27 (2016) 1308–1316.

DOI: 10.1002/pat.3798

Google Scholar

[18] M. M. Marliana et al., Flame retardancy, Thermal and mechanical properties of Kenaf fiber reinforced Unsaturated polyester/Phenolic composite, Fibers Polym., 17 (2016) 902–909.

DOI: 10.1007/s12221-016-5888-y

Google Scholar

[19] S. C. Chin, K. F. Tee, F. S. Tong, H. R. Ong, and J. Gimbun, Thermal and mechanical properties of bamboo fiber reinforced composites, Mater. Today Commun., 23 (2020) 100876.

DOI: 10.1016/j.mtcomm.2019.100876

Google Scholar

[20] F. S. Tong et al., Influence of Alkali Treatment on Physico-Chemical Properties of Malaysian Bamboo Fiber: a Preliminary Study, Malaysian J. Anal. Sci., 22 (2018) 143–150.

DOI: 10.17576/mjas-2018-2201-18

Google Scholar

[21] M. Yang et al., Thermal and mechanical performance of unidirectional composites from bamboo fibers with varying volume fractions, Polym. Compos., 40 (2019) 3929–3937.

DOI: 10.1002/pc.25253

Google Scholar

[22] A. C. Manalo, E. Wani, N. A. Zukarnain, W. Karunasena, and K. T. Lau, Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites, Compos. Part B Eng., 80 (2015) 73–83.

DOI: 10.1016/j.compositesb.2015.05.033

Google Scholar

[23] J. K. Huang and W. Bin Young, The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites, Compos. Part B Eng., 166 (2019) 272–283.

DOI: 10.1016/j.compositesb.2018.12.013

Google Scholar

[24] ASTM D3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, United States, 15, (2002).

Google Scholar

[25] Technical Data Sheet, MFE-711 Epoxy Vinyl Ester Resin, Tullamarine, Australia, 1–2, (2019).

Google Scholar

[26] Product Imformation, D.E.R.TM 331 Liquid Epoxy Resin, United States, Form No. 296-01408-0109X-TD.

Google Scholar

[27] M. A. Alam, A. Hassan, and Z. C. Muda, Development of kenaf fibre reinforced polymer laminate for shear strengthening of reinforced concrete beam, Mater. Struct. Constr., 49 (2016) 795–811.

DOI: 10.1617/s11527-015-0539-0

Google Scholar

[28] ASTM D790-03, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, West Conshohocken, United States, (2003).

DOI: 10.1520/d0790-15e01

Google Scholar

[29] R. Rahman, S. Zhafer, and F. Syed, Tensile properties of natural and synthetic fiber-reinforced polymer composites, Elsevier Ltd (2019).

DOI: 10.1016/b978-0-08-102292-4.00005-9

Google Scholar

[30] X. Li and F. Wang, Effect of the statistical nature of fiber strength on the predictability of tensile properties of polymer composites reinforced with bamboo fibers: Comparison of linear- and power-law Weibull models, Polymers (Basel)., 8 (2016).

DOI: 10.3390/polym8010024

Google Scholar