[1]
S.S. Low, M.T.T. Tan, P.S. Khiew, H.-S. Loh, W.S. Chiu, One Step Green Preparation of Graphene/ZnO Nanocomposite for Electrochemical Sensing, J. Nanosci. Nanotechnol. 16 (2016) 1-7.
DOI: 10.1166/jnn.2016.12367
Google Scholar
[2]
A. Tayyebi, M. Outokesh, M. Tayebi, A. Shafikhani, S.S. Sengor, ZnO quantum dots-graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye, J. Alloys Compd. 663 (2016) 738-749.
DOI: 10.1016/j.jallcom.2015.12.169
Google Scholar
[3]
R. Singh, M. Kumar, H. Khajuria, J. Ladol, H.N. Sheikh, Hydrothermal synthesis of magnetic Fe3O4–nitrogen‑doped graphene hybrid composite and its application as photocatalyst in degradation of methyl orange and methylene blue dyes in presence of copper (II) ions, Chem. Zvesti 72 (2018) 1181-1192.
DOI: 10.1007/s11696-018-0385-y
Google Scholar
[4]
M. Gong, Q. Liu, B. Cook, B. Kattel, T. Wang, W.-L. Chan, D. Ewing, M. Casper, A. Stramel, J.Z. Wu, All-Printable ZnO Quantum Dots/Graphene van der Waals Heterostructures for Ultrasensitive Detection of Ultraviolet Light, ACS Nano 11 (2017) 4114-4123.
DOI: 10.1021/acsnano.7b00805
Google Scholar
[5]
L. Chu, M. Li, Y. Wang, X. Li, Z. Wan, S. Dou, Y. Chu, Multishelled NiO Hollow Spheres Decorated by Graphene Nanosheets as Anodes for Lithium-Ion Batteries with Improved Reversible Capacity and Cycling Stability, J. Nanomater. (2016) 1-6.
DOI: 10.1155/2016/4901847
Google Scholar
[6]
M. Darvishi, G. Mohseni-Asgerani, J. Seyed-Yazdi, Simple microwave irradiation procedure for the synthesis of CuO/Graphene hybrid composite with significant photocatalytic enhancement, Surf. Interfaces 7 (2017) 69-73.
DOI: 10.1016/j.surfin.2017.02.007
Google Scholar
[7]
S. Ramesh, K. Karuppasamy, H.-S. Kim, H.S. Kim, J.-H. Kim, Hierarchical Flowerlike 3D nanostructure of Co3O4@MnO2/N-doped Graphene oxide (NGO) hybrid composite for a high performance supercapacitor, Sci. Rep. 8 (2018) 16543.
DOI: 10.1038/s41598-018-34905-7
Google Scholar
[8]
Z. Guo, P. Ren, B. Fu, F. Ren, Y. Jin, Z. Sun, Multi-layered graphene-Fe3O4/poly (vinylidene fluoride) hybrid composite films for high-effcient electromagnetic shielding, Polym. Test. 89 (2020) 106652.
DOI: 10.1016/j.polymertesting.2020.106652
Google Scholar
[9]
G. Zhang, R. Shu, Y. Xie, H. Xia, Y. Gan, J. Shi, J. He, Cubic MnFe2O4 particles decorated reduced graphene oxide with excellent microwave absorption properties, Mater. Lett. 231 (2018) 209-212.
DOI: 10.1016/j.matlet.2018.08.055
Google Scholar
[10]
M. Sethi, U.S. Shenoy, D.K. Bhat, Porous Graphene-NiCo2O4 Nanorod Hybrid Composite as High Performance Supercapacitor Electrode Material, New J. Chem. 44 (2020) 4033-4041.
DOI: 10.1039/c9nj05725k
Google Scholar
[11]
M.K. Kavitha, H. John, P. Gopinath, Reji Philip, Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties, J. Mater. Chem. C 1 (2013) 3669-3676.
DOI: 10.1039/c3tc30323c
Google Scholar
[12]
A. Ramadoss, S.J. Kim, Improved activity of a graphene-TiO2 electrode in an electrochemical supercapacitor, Carbon 63 (2013) 434-445.
DOI: 10.1016/j.carbon.2013.07.006
Google Scholar
[13]
E.T.D. Kumar, S. Easwaramoorthi, J.R. Rao, Fluorinated Reduced Graphene Oxide-Encapsulated ZnO Hollow Sphere Composite as an Efficient Photocatalyst with Increased Charge-Carrier Mobility, Langmuir 35 (2019) 8681-8691.
DOI: 10.1021/acs.langmuir.9b00444
Google Scholar
[14]
H.H. Mohamed, Sonochemical Synthesis of ZnO Hollow Microstructure/Reduced Graphene Oxide for Enhanced Sunlight Photocatalytic Degradation of Organic Pollutants, J. Photochem. Photobiol. A 353 (2018) 401-408.
DOI: 10.1016/j.jphotochem.2017.11.052
Google Scholar
[15]
Y. Song, P. Shao, J. Tian, W. Shi, S. Gao, J. Qi, X. Yan, F. Cui, One-step hydrothermal synthesis of ZnO hollow nanospheres uniformly grown on graphene for enhanced photocatalytic performance, Ceram. Int. 42 (2016) 2074-2078.
DOI: 10.1016/j.ceramint.2015.09.082
Google Scholar
[16]
T. Gan, A.-xia Zhao. S.-hui Wang, Z. Lv, J.-yong Sun, Hierarchical triple-shelled porous hollow zinc oxide spheres wrapped in graphene oxide as efficient sensor material for simultaneous electrochemical determination of synthetic antioxidants in vegetable oil, Sens. Actuators B Chem. 235 (2016) 707-716.
DOI: 10.1016/j.snb.2016.05.137
Google Scholar
[17]
M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties, J. Mater. Chem. A 2 (2014) 16403-16409.
DOI: 10.1039/c4ta03033h
Google Scholar
[18]
Q.-P. Luo, X.-Y. Yu, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Yo. Su, Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity, J. Phys. Chem. C 116 (2012) 8111-8117.
DOI: 10.1021/jp2113329
Google Scholar
[19]
F.S. Omar, H.N. Ming, S.M. Hafiz, L. H. Ngee, Microwave Synthesis of Zinc Oxide/Reduced Graphene Oxide Hybrid for Adsorption-Photocatalysis Application, Int. J. Photoenergy 2014 (2014) 1–8.
DOI: 10.1155/2014/176835
Google Scholar
[20]
T. Lv, L. Pan, X. Liu, T. Lu, G, Zhu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction, J. Alloys Compd. 509 (2011) 10086–10091.
DOI: 10.1016/j.jallcom.2011.08.045
Google Scholar
[21]
J. Qina, X. Zhang, C.Yang, M. Cao, M. Ma, R. Liu, ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye, Appl. Surf. Sci. 392 (2017) 196-203.
DOI: 10.1016/j.apsusc.2016.09.043
Google Scholar
[22]
S.P. Lim, N. M. Huang, H. N. Lim, Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application, Ceram. Int. 39 (2013) 6647-6655.
DOI: 10.1016/j.ceramint.2013.01.102
Google Scholar
[23]
E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew, W.S. Chiu, One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors, Ceram. Int. 41 (2015) 715-724.
DOI: 10.1016/j.ceramint.2014.08.128
Google Scholar
[24]
H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nat. Commun. 4 (2013) 1894: 1-7.
DOI: 10.1038/ncomms2932
Google Scholar
[25]
G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors, Electrochim. Acta 92 (2013) 205-215.
DOI: 10.1016/j.electacta.2012.12.120
Google Scholar
[26]
M.F.Y.M. Hanappi, M. Deraman, M. Suleman, N.S.M. Nor, N.E.S. Sazali, E. Hamdan, N.S.M. Tajuddin, N.H. Basri, M.R.M. Jasni, M.A.R. Othman, Influence of aqueous KOH and H2SO4 electrolytes ionic parameters on the performance of carbon-based supercapacitor electrodes, Functional Materials Letters 3 (2017) 1750013: 1-5.
DOI: 10.1142/s1793604717500138
Google Scholar
[27]
S. Ghasemi, R. Hosseinzadeh, M. Jafari, MnO2 nanoparticles decorated on electrophoretically deposited graphene nanosheets for high performance supercapacitor, Int. J. Hydrog. Energy 40 (2015) 1037-1046.
DOI: 10.1016/j.ijhydene.2014.11.072
Google Scholar