Physical and Electrochemical Properties of Graphene Decorated with ZnO Hollow Spheres for Supercapacitor Applications

Article Preview

Abstract:

Single-layer graphene-ZnO hollow sphere (SLG-ZnO(HS)) composites were successfully prepared through facile one-step solvothermal synthesis route. The morphological structures of the samples were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Hollow spheres consisting of ZnO nanoparticles with a diameter of approximately 30 nm are decorated to both sides of the SLG sheets. The electrochemical performances were tested by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance (EIS). The SLG-ZnO(HS) composite electrode synthesized at a concentration of 0.25 mM Zn precursor exhibited an enhanced specific capacitance of 34.7 F/g at a scan rate of 1 mV/s with energy and power densities of 5.39 W h/kg and 1.73 kW/kg, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

284-292

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.S. Low, M.T.T. Tan, P.S. Khiew, H.-S. Loh, W.S. Chiu, One Step Green Preparation of Graphene/ZnO Nanocomposite for Electrochemical Sensing, J. Nanosci. Nanotechnol. 16 (2016) 1-7.

DOI: 10.1166/jnn.2016.12367

Google Scholar

[2] A. Tayyebi, M. Outokesh, M. Tayebi, A. Shafikhani, S.S. Sengor, ZnO quantum dots-graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye, J. Alloys Compd. 663 (2016) 738-749.

DOI: 10.1016/j.jallcom.2015.12.169

Google Scholar

[3] R. Singh, M. Kumar, H. Khajuria, J. Ladol, H.N. Sheikh, Hydrothermal synthesis of magnetic Fe3O4–nitrogen‑doped graphene hybrid composite and its application as photocatalyst in degradation of methyl orange and methylene blue dyes in presence of copper (II) ions, Chem. Zvesti 72 (2018) 1181-1192.

DOI: 10.1007/s11696-018-0385-y

Google Scholar

[4] M. Gong, Q. Liu, B. Cook, B. Kattel, T. Wang, W.-L. Chan, D. Ewing, M. Casper, A. Stramel, J.Z. Wu, All-Printable ZnO Quantum Dots/Graphene van der Waals Heterostructures for Ultrasensitive Detection of Ultraviolet Light, ACS Nano 11 (2017) 4114-4123.

DOI: 10.1021/acsnano.7b00805

Google Scholar

[5] L. Chu, M. Li, Y. Wang, X. Li, Z. Wan, S. Dou, Y. Chu, Multishelled NiO Hollow Spheres Decorated by Graphene Nanosheets as Anodes for Lithium-Ion Batteries with Improved Reversible Capacity and Cycling Stability, J. Nanomater. (2016) 1-6.

DOI: 10.1155/2016/4901847

Google Scholar

[6] M. Darvishi, G. Mohseni-Asgerani, J. Seyed-Yazdi, Simple microwave irradiation procedure for the synthesis of CuO/Graphene hybrid composite with significant photocatalytic enhancement, Surf. Interfaces 7 (2017) 69-73.

DOI: 10.1016/j.surfin.2017.02.007

Google Scholar

[7] S. Ramesh, K. Karuppasamy, H.-S. Kim, H.S. Kim, J.-H. Kim, Hierarchical Flowerlike 3D nanostructure of Co3O4@MnO2/N-doped Graphene oxide (NGO) hybrid composite for a high performance supercapacitor, Sci. Rep. 8 (2018) 16543.

DOI: 10.1038/s41598-018-34905-7

Google Scholar

[8] Z. Guo, P. Ren, B. Fu, F. Ren, Y. Jin, Z. Sun, Multi-layered graphene-Fe3O4/poly (vinylidene fluoride) hybrid composite films for high-effcient electromagnetic shielding, Polym. Test. 89 (2020) 106652.

DOI: 10.1016/j.polymertesting.2020.106652

Google Scholar

[9] G. Zhang, R. Shu, Y. Xie, H. Xia, Y. Gan, J. Shi, J. He, Cubic MnFe2O4 particles decorated reduced graphene oxide with excellent microwave absorption properties, Mater. Lett. 231 (2018) 209-212.

DOI: 10.1016/j.matlet.2018.08.055

Google Scholar

[10] M. Sethi, U.S. Shenoy, D.K. Bhat, Porous Graphene-NiCo2O4 Nanorod Hybrid Composite as High Performance Supercapacitor Electrode Material, New J. Chem. 44 (2020) 4033-4041.

DOI: 10.1039/c9nj05725k

Google Scholar

[11] M.K. Kavitha, H. John, P. Gopinath, Reji Philip, Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties, J. Mater. Chem. C 1 (2013) 3669-3676.

DOI: 10.1039/c3tc30323c

Google Scholar

[12] A. Ramadoss, S.J. Kim, Improved activity of a graphene-TiO2 electrode in an electrochemical supercapacitor, Carbon 63 (2013) 434-445.

DOI: 10.1016/j.carbon.2013.07.006

Google Scholar

[13] E.T.D. Kumar, S. Easwaramoorthi, J.R. Rao, Fluorinated Reduced Graphene Oxide-Encapsulated ZnO Hollow Sphere Composite as an Efficient Photocatalyst with Increased Charge-Carrier Mobility, Langmuir 35 (2019) 8681-8691.

DOI: 10.1021/acs.langmuir.9b00444

Google Scholar

[14] H.H. Mohamed, Sonochemical Synthesis of ZnO Hollow Microstructure/Reduced Graphene Oxide for Enhanced Sunlight Photocatalytic Degradation of Organic Pollutants, J. Photochem. Photobiol. A 353 (2018) 401-408.

DOI: 10.1016/j.jphotochem.2017.11.052

Google Scholar

[15] Y. Song, P. Shao, J. Tian, W. Shi, S. Gao, J. Qi, X. Yan, F. Cui, One-step hydrothermal synthesis of ZnO hollow nanospheres uniformly grown on graphene for enhanced photocatalytic performance, Ceram. Int. 42 (2016) 2074-2078.

DOI: 10.1016/j.ceramint.2015.09.082

Google Scholar

[16] T. Gan, A.-xia Zhao. S.-hui Wang, Z. Lv, J.-yong Sun, Hierarchical triple-shelled porous hollow zinc oxide spheres wrapped in graphene oxide as efficient sensor material for simultaneous electrochemical determination of synthetic antioxidants in vegetable oil, Sens. Actuators B Chem. 235 (2016) 707-716.

DOI: 10.1016/j.snb.2016.05.137

Google Scholar

[17] M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties, J. Mater. Chem. A 2 (2014) 16403-16409.

DOI: 10.1039/c4ta03033h

Google Scholar

[18] Q.-P. Luo, X.-Y. Yu, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Yo. Su, Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity, J. Phys. Chem. C 116 (2012) 8111-8117.

DOI: 10.1021/jp2113329

Google Scholar

[19] F.S. Omar, H.N. Ming, S.M. Hafiz, L. H. Ngee, Microwave Synthesis of Zinc Oxide/Reduced Graphene Oxide Hybrid for Adsorption-Photocatalysis Application, Int. J. Photoenergy 2014 (2014) 1–8.

DOI: 10.1155/2014/176835

Google Scholar

[20] T. Lv, L. Pan, X. Liu, T. Lu, G, Zhu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction, J. Alloys Compd. 509 (2011) 10086–10091.

DOI: 10.1016/j.jallcom.2011.08.045

Google Scholar

[21] J. Qina, X. Zhang, C.Yang, M. Cao, M. Ma, R. Liu, ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye, Appl. Surf. Sci. 392 (2017) 196-203.

DOI: 10.1016/j.apsusc.2016.09.043

Google Scholar

[22] S.P. Lim, N. M. Huang, H. N. Lim, Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application, Ceram. Int. 39 (2013) 6647-6655.

DOI: 10.1016/j.ceramint.2013.01.102

Google Scholar

[23] E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew, W.S. Chiu, One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors, Ceram. Int. 41 (2015) 715-724.

DOI: 10.1016/j.ceramint.2014.08.128

Google Scholar

[24] H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nat. Commun. 4 (2013) 1894: 1-7.

DOI: 10.1038/ncomms2932

Google Scholar

[25] G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors, Electrochim. Acta 92 (2013) 205-215.

DOI: 10.1016/j.electacta.2012.12.120

Google Scholar

[26] M.F.Y.M. Hanappi, M. Deraman, M. Suleman, N.S.M. Nor, N.E.S. Sazali, E. Hamdan, N.S.M. Tajuddin, N.H. Basri, M.R.M. Jasni, M.A.R. Othman, Influence of aqueous KOH and H2SO4 electrolytes ionic parameters on the performance of carbon-based supercapacitor electrodes, Functional Materials Letters 3 (2017) 1750013: 1-5.

DOI: 10.1142/s1793604717500138

Google Scholar

[27] S. Ghasemi, R. Hosseinzadeh, M. Jafari, MnO2 nanoparticles decorated on electrophoretically deposited graphene nanosheets for high performance supercapacitor, Int. J. Hydrog. Energy 40 (2015) 1037-1046.

DOI: 10.1016/j.ijhydene.2014.11.072

Google Scholar