Comparison of Stability Mechanism of Graphene Nanoparticles in Polyester Oil

Article Preview

Abstract:

Stability of nanolubricants is a basic requirement for heat transfer application since it is directly related to the properties of nanolubricants. However, the particle suspension is the major issue of creating a new nanolubricant. The objective of the present study is to compare the effect of different dispersion methods on the stability of graphene in polyester oil-based lubricant. Nanolubricant are prepared by different two-step method, including magnetic stirrer, overhead stirrer, and sonication. The stability of nanolubricant was measured by sedimentation observation, metallographic microscopy, and zeta potential. The results show that the overhead stirrer method was the most effective at providing a more stable suspension.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-325

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sheikholeslami, Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles, J. Mol. Liq. 263 (2018) 303–315. https://doi.org/10.1016/j.molliq.2018.04.144.

DOI: 10.1016/j.molliq.2018.04.144

Google Scholar

[2] M. Sheikholeslami, Finite element method for PCM solidification in existence of CuO nanoparticles, J. Mol. Liq. 265 (2018) 347–355. https://doi.org/10.1016/j.molliq.2018.05.132.

DOI: 10.1016/j.molliq.2018.05.132

Google Scholar

[3] E. o. lla. Ettefaghi, H. Ahmadi, A. Rashidi, A. Nouralishahi, S.S. Mohtasebi, Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant, Int. Commun. Heat Mass Transf. 46 (2013) 142–147. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.003.

DOI: 10.1016/j.icheatmasstransfer.2013.05.003

Google Scholar

[4] W. Dai, B. Kheireddin, H. Gao, H. Liang, Roles of nanoparticles in oil lubrication, Tribol. Int. 102 (2016) 88–98. https://doi.org/10.1016/j.triboint.2016.05.020.

DOI: 10.1016/j.triboint.2016.05.020

Google Scholar

[5] M. Gulzar, H.H. Masjuki, M.A. Kalam, M. Varman, N.W.M. Zulkifli, R.A. Mufti, R. Zahid, Tribological performance of nanoparticles as lubricating oil additives, J. Nanoparticle Res. 18 (2016) 1–25. https://doi.org/10.1007/s11051-016-3537-4.

DOI: 10.1007/s11051-016-3537-4

Google Scholar

[6] V. Srinivas, C.V.K.N.S.N. Moorthy, V. Dedeepya, P. V. Manikanta, V. Satish, Nanofluids with CNTs for automotive applications, Heat Mass Transf. Und Stoffuebertragung. 52 (2016) 701–712. https://doi.org/10.1007/s00231-015-1588-1.

DOI: 10.1007/s00231-015-1588-1

Google Scholar

[7] S. Pradhan, J. Hedberg, E. Blomberg, S. Wold, I. Odnevall Wallinder, Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles, J. Nanoparticle Res. 18 (2016) 1–14. https://doi.org/10.1007/s11051-016-3597-5.

DOI: 10.1007/s11051-016-3597-5

Google Scholar

[8] V. Zin, F. Agresti, S. Barison, L. Colla, M. Fabrizio, Influence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oil, J. Nanosci. Nanotechnol. 15 (2015) 3590–3598. https://doi.org/10.1166/jnn.2015.9839.

DOI: 10.1166/jnn.2015.9839

Google Scholar

[9] J. Lou, H. Zhang, R. Wang, Experimental investigation of graphite nanolubricant used in a domestic refrigerator, Adv. Mech. Eng. 7 (2015) 168781401557101. https://doi.org/10.1177/1687814015571011.

DOI: 10.1177/1687814015571011

Google Scholar

[10] H. Zhu, C. Li, D. Wu, C. Zhang, Y. Yin, Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids, Sci. China Technol. Sci. 53 (2010) 360–368. https://doi.org/10.1007/s11431-010-0032-5.

DOI: 10.1007/s11431-010-0032-5

Google Scholar

[11] A.N. Afifah, S. Syahrullail, N.A.C. Sidik, Magnetoviscous effect and thermomagnetic convection of magnetic fluid: A review, Renew. Sustain. Energy Rev. 55 (2016) 1030–1040. https://doi.org/10.1016/j.rser.2015.11.018.

DOI: 10.1016/j.rser.2015.11.018

Google Scholar

[12] S.S.N. Azman, N.W.M. Zulkifli, H. Masjuki, M. Gulzar, R. Zahid, Study of tribological properties of lubricating oil blend added with graphene nanoplatelets, J. Mater. Res. 31 (2016) 1932–1938. https://doi.org/10.1557/jmr.2016.24.

DOI: 10.1557/jmr.2016.24

Google Scholar

[13] K.G.K. Singh, R. Suresh, Behavior of Composite Nanofluids Under Extreme Pressure Condition, 1 (2018) 46–54.

Google Scholar

[14] F.Y. Wang, T.Y. Wang, T.Y. Liao, M.Y. Liu, The complete mitochondrial genome sequence of Nemateleotris decora (gobiiformes, gobiidae), Mitochondrial DNA Part A DNA Mapping, Seq. Anal. 27 (2016) 4274–4275. https://doi.org/10.3109/19401736.2015.1082091.

DOI: 10.3109/19401736.2015.1082091

Google Scholar

[15] A.N. Farhanah, S. Syahrullail, E.A. Rahim, Preparation and dispersion stability of graphite nanoparticles in palm oil, 19 (2018) 495–496.

Google Scholar

[16] F. Yu, Y. Chen, X. Liang, J. Xu, C. Lee, Q. Liang, P. Tao, T. Deng, Dispersion stability of thermal nanofluids, Prog. Nat. Sci. Mater. Int. 27 (2017) 531–542. https://doi.org/10.1016/j.pnsc.2017.08.010.

DOI: 10.1016/j.pnsc.2017.08.010

Google Scholar

[17] H. Setia, R. Gupta, R.K. Wanchoo, Stability of nanofluids, Mater. Sci. Forum. 757 (2013) 139–149. https://doi.org/10.4028/www.scientific.net/MSF.757.139.

DOI: 10.4028/www.scientific.net/msf.757.139

Google Scholar

[18] A.S. Al-Janabi, M. Hussin, Stability and thermal conductivity of graphene in polyester nanolubricant, AIP Conf. Proc. 2267 (2020). https://doi.org/10.1063/5.0015740.

DOI: 10.1063/5.0015740

Google Scholar