Evaluation of Olivine LiFePO4 Polyanionic Cathode Material Using Density Functional Theory

Article Preview

Abstract:

The first principles study on the LiFePO4 and FePO4 crystal has been evaluated using the density functional theory encrypted in the Cambridge Serial Total Energy Package (CASTEP) computer code. The structural properties, electronic properties, and intercalation voltage of the cathode material are presented. Without the Hubbard U parameter, the conventional functional of GGA-PBE and GGA-PBEsol unable to produce the experimental open-circuit voltage (OCV) and band gap (BG) of cathode material correctly. Generally, the value of the lattice parameter, OCV, and BG will increase as the U value is increased. For OCV, the suitable U value for the GGA-PBE and GGA-PBEsol is 3 eV, whereas, for BG, the appropriate U value for both functional is around 4.3 eV to 4.5 eV. Different Hubbard U value is needed for different functional. It is found that GGA-PBEsol + U is the best parameter to calculate the electrical properties of LiFePO4 ­­­­material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

293-298

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Yan, B. Li, Z. Yu, W. Chu, D. Xia, First-Principles Study: Tuning the Redox Behavior of Lithium-Rich Layered Oxides by Chlorine Doping, J. Phys. Chem. C. 121 (2017) 7155–7163.

DOI: 10.1021/acs.jpcc.7b01168

Google Scholar

[2] Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-Ion Batteries: Current Status and Future Perspectives, Electrochem. Energy Rev. 2 (2019) 1–28.

DOI: 10.1007/s41918-018-0022-z

Google Scholar

[3] A. Bhandari, J. Bhattacharya, R.G.S. Pala, Adsorption Preference of HF over Ethylene Carbonate Leads to Dominant Presence of Fluoride Products in LiFePO4 Cathode-Electrolyte Interface in Li-Ion Batteries, J. Phys. Chem. C. 124 (2020) 9170–9177.

DOI: 10.1021/acs.jpcc.0c00565

Google Scholar

[4] J. Hu, W. Huang, L. Yang, F. Pan, Structure and performance of the LiFePO4cathode material: From the bulk to the surface, Nanoscale. 12 (2020) 15036–15044.

DOI: 10.1039/d0nr03776a

Google Scholar

[5] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc. 144 (1997) 1188–1194.

DOI: 10.1149/1.1837571

Google Scholar

[6] M. Molenda, M. Świętosławski, A. Milewska, M.M. Zaitz, A. Chojnacka, B. Dudek, R. Dziembaj, Carbon nanocoatings for C/LiFePO4 composite cathode, Solid State Ionics. 251 (2013) 47–50.

DOI: 10.1016/j.ssi.2013.03.003

Google Scholar

[7] J. Zhou, B.H. Liu, Z.P. Li, Nanostructure optimization of LiFePO4/carbon aerogel composites for performance enhancement, Solid State Ionics. 244 (2013) 23–29.

DOI: 10.1016/j.ssi.2013.05.003

Google Scholar

[8] F.W. Badrudin, M.F.M. Taib, R.I.P.R. Mustapha, O.H. Hassan, M.Z.A. Yahya, Effects of Vanadium Substitution in the Layered LiFeSO4OH: A First Principles Investigation, Mater. Today Proc. 4 (2017) 5108–5115.

DOI: 10.1016/j.matpr.2017.05.015

Google Scholar

[9] X. Wu, F. Kang, W. Duan, J. Li, Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials, Prog. Nat. Sci. Mater. Int. 29 (2019) 247–255.

DOI: 10.1016/j.pnsc.2019.04.003

Google Scholar

[10] Stewart J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Zeitschrift Für Krist. 220 (2005) 567.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[11] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[12] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100 (2008) 136406.

DOI: 10.1103/physrevlett.102.039902

Google Scholar

[13] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[14] J. Jung, M. Cho, M. Zhou, Ab initio study of the fracture energy of LiFePO4/FePO4 interfaces, J. Power Sources. 243 (2013) 706–714.

DOI: 10.1016/j.jpowsour.2013.06.030

Google Scholar

[15] H. Lin, Y. Wen, C. Zhang, L. Zhang, Y. Huang, B. Shan, R. Chen, A GGA+U study of lithium diffusion in vanadium doped LiFePO4, Solid State Commun. 152 (2012) 999–1003.

DOI: 10.1016/j.ssc.2012.03.027

Google Scholar

[16] C. Loschen, J. Carrasco, K.M. Neyman, F. Illas, First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 35115.

DOI: 10.1103/physrevb.84.199906

Google Scholar

[17] M. Aydinol, A. Kohan, G. Ceder, K. Cho, J. Joannopoulos, Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides, Phys. Rev. B - Condens. Matter Mater. Phys. 56 (1997) 1354–1365.

DOI: 10.1103/physrevb.56.1354

Google Scholar

[18] F.W. Badrudin, M.F.M. Taib, O.H. Hassan, M.Z.A. Yahya, Effect of lithium intercalation on the structural and electronic properties of layered LiFeSO4OH and layered FeSO4OH using first-principle calculations, Comput. Mater. Sci. 119 (2016) 144–151.

DOI: 10.1016/j.commatsci.2016.03.042

Google Scholar

[19] S. Laref, A. Laref, Theoretical insight into the strain effect on the intercalation potential of Li-FePO4 materials, RSC Adv. 5 (2015) 35667–35674.

DOI: 10.1039/c5ra00045a

Google Scholar

[20] F. Zhou, M. Cococcioni, K. Kang, G. Ceder, The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni, Electrochem. Commun. 6 (2004) 1144–1148.

DOI: 10.1016/j.elecom.2004.09.007

Google Scholar

[21] Y. Okuno, K. Ushirogata, K. Sodeyama, G. Shukri, Y. Tateyama, Structures, Electronic States, and Reactions at Interfaces between LiNi 0.5 Mn 1.5 O 4 Cathode and Ethylene Carbonate Electrolyte: A First-Principles Study, J. Phys. Chem. C. 123 (2019) 2267–2277.

DOI: 10.1021/acs.jpcc.8b10625

Google Scholar

[22] S. Shi, L. Liu, C. Ouyang, D.S. Wang, Z. Wang, L. Chen, X. Huang, Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations, Phys. Rev. B - Condens. Matter Mater. Phys. 68 (2003) 1951081–1951085.

DOI: 10.1103/physrevb.68.195108

Google Scholar

[23] Y.-N. Xu, S.-Y. Chung, J.T. Bloking, Y.-M. Chiang, W.Y. Ching, Electronic Structure and Electrical Conductivity of Undoped LiFePO4, Electrochem. Solid-State Lett. 7 (2004) A131–A134.

DOI: 10.1149/1.1703470

Google Scholar

[24] P. Tang, N.A.W. Holzwarth, Electronic structure of FePO4, LiFePO4, and related materials, Phys. Rev. B. 68 (2003) 165107.

Google Scholar

[25] C. Frayret, A. Villesuzanne, N. Spaldin, E. Bousquet, J.-N. Chotard, N. Recham, J.-M. Tarascon, LiMSO4F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope., Phys. Chem. Chem. Phys. 12 (2010) 15512–22.

DOI: 10.1039/c0cp00517g

Google Scholar

[26] T. Tsevelmaa, D. Odkhuu, O. Kwon, S. Cheol Hong, A first-principles study of magnetism of lithium fluorosulphate LiFeSO4F, J. Appl. Phys. 113 (2013) 17B302.

DOI: 10.1063/1.4794723

Google Scholar

[27] A.K. Padhi, V. Manivannan, J.B. Goodenough, Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution, J. Electrochem. Soc. 145 (1998) 1518–1520.

DOI: 10.1149/1.1838513

Google Scholar

[28] D.-H. Seo, Y.-U. Park, S.-W. Kim, I. Park, R. a. Shakoor, K. Kang, First-principles study on lithium metal borate cathodes for lithium rechargeable batteries, Phys. Rev. B. 83 (2011) 205127.

DOI: 10.1103/physrevb.83.205127

Google Scholar

[29] F. Zhou, K. Kang, T. Maxisch, G. Ceder, D. Morgan, The electronic structure and band gap of LiFePO4 and LiMnPO4, Solid State Commun. 132 (2004) 181–186.

DOI: 10.1016/j.ssc.2004.07.055

Google Scholar