[1]
W.D. Bascon, J.B. Romans, Microvoids in Glass-Resin Composites. Their Origin and Effect on Composite Strength, Ind. Eng. Chem. Prod. Res. Dev. 7-3 (1968) 172–178.
Google Scholar
[2]
L.B. Batch, Y.-T. Chen, Ch.W. Macosko, Capillary impregnation of aligned fibrous beds: Experiments and Model, J. Reinf. Plast. and Comp. 15 (1996) 1027-1051.
DOI: 10.1177/073168449601501004
Google Scholar
[3]
A.W. Chan, R.J. Morgan, Tow impregnation during resin transfer molding of bi-directional nonwoven fabrics, Polym. Comp., 14/4 (1993) 335-340.
DOI: 10.1002/pc.750140409
Google Scholar
[4]
C. Lekakou, M.G. Bader, Mathematical modelling of macro- and micro-infiltration in resin transfer moulding (RTM). Comp. Part A, 29A (1998) 29-37.
DOI: 10.1016/s1359-835x(97)00030-4
Google Scholar
[5]
L. Zingraff, V. Michaud, P.E. Bourban, J.-A.E. Månson, Resin transfer moulding of anionically polymerized polyamide 12, Comp. Part A, 36 (2005) 1675-1686.
DOI: 10.1016/j.compositesa.2005.03.023
Google Scholar
[6]
V. Michaud, A review of non-saturated resin flow in liquid composite moulding processes, Transp. Porous Med. 115 (2016) 581-601.
DOI: 10.1007/s11242-016-0629-7
Google Scholar
[7]
P. Hergan, E. Fauster, D.Perkonigg, G. Pinter, R. Schledjewski, Flow-speed-controlled quality optimization for one-shot-hybrid RTM parts, Adv. Manufact: Polym.&Comp. Sci., 6/1 (2020) 29-37.
DOI: 10.1080/20550340.2020.1722910
Google Scholar
[8]
Y. Blößl, R. Schledjewski, Analysis of the capillary driven wetting behaviour in reinforcing textile structures. Proc. 14th International Conference on Flow Processes in Composite Materials, Luleå, Sweden, 30.05-01.06.2018, Paper 48, https://www.ltu.se/research/subjects/Stromningslara/Konferenser/FPCM-14?l=en.
Google Scholar
[9]
Y. Blößl, Impregnation of natural fiber reinforcements in liquid composite molding processes, PhD thesis, Montanuniversitaet Leoben (2021), https://pure.unileoben.ac.at/portal/en/.
Google Scholar
[10]
R. Lucas, Über das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten, Kolloid-Zeitschrift 23/1 (1918) 15–22.
DOI: 10.1007/bf01461107
Google Scholar
[11]
E.W. Washburn, The Dynamics of Capillary Flow. Phys. Rev. 17/3 (1921) 273–83.
Google Scholar
[12]
J. II. Jurin, An account of some experiments shown before the Royal Society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Phil. Trans. R. Soc. 30/355 (1719) 739–747.
DOI: 10.1098/rstl.1717.0026
Google Scholar
[13]
F. LeBel, A.E. Fanaei, E. Ruiz, F. Trochu. Experimental characterization by fluorescence of capillary flows in dual-scale engineering fabrics. Text. Res. J. 83/15 (2013) 1634–1659.
DOI: 10.1177/0040517512471742
Google Scholar
[14]
C. Ravey, E. Ruiz, F. Trochu, Determination of the optimal impregnation velocity in Resin Transfer Molding by capillary rise experiments and infrared thermography. Compos. Sci. Technol. 99 (2014) 96–102.
DOI: 10.1016/j.compscitech.2014.05.019
Google Scholar
[15]
N. Fries, Capillary transport processes in porous materials - experiment and model. (PhD thesis, University of Bremen, 2010), 1st ed. Cuvillier, Göttingen, (2010).
Google Scholar
[16]
W.M. Deen, Introduction to chemical engineering fluid mechanics. Cambridge University Press, Cambridge (2016).
Google Scholar