[1]
T. Mennecart, H. Werner, N. Ben Khalifa, and K. Weidenmann. Developments and Analyses of Alternative Processes for the Manufacturing of Fiber Metal Laminates. In Proceedings of the ASME 13th International Manufacturing Science and Engineering Conference -2018-, New York, N.Y., 2018. The American Society of Mechanical Engineers.
DOI: 10.1115/msec2018-6447
Google Scholar
[2]
S. Krishnakumar. Fiber Metal Laminates - The Synthesis of Metals and Composites. Materials and Manufacturing Processes, 9(2):295-354, (1994).
DOI: 10.1080/10426919408934905
Google Scholar
[3]
A. Asundi and Alta Y.N. Choi. Fiber metal laminates: An advanced material for future aircraft. Journal of Materials Processing Technology, 63(1-3):384-394, 1997.[4] M. R. Sadeghi, Ali A. A. Jeddi, and S. Shaikhzadeh Najar. Theoretical and experimental analysis of bending rigidity of plain and twill woven fabrics. Journal of the Textile Institute, 108(10):1700-1706, (2017).
DOI: 10.1080/00405000.2017.1280760
Google Scholar
[5]
T. Mennecart, L. Hiegemann, and N.B. Khalifa. Analysis of the forming behaviour of in-situ drawn sandwich sheets. Procedia Engineering, 207:890-895, (2017).
DOI: 10.1016/j.proeng.2017.10.847
Google Scholar
[6]
H.O. Werner, C.T. Poppe, F. Henning, and L. Kärger. Material Modeling in Forming Simulation of Three-Dimensional Fiber-Metal-Laminates - A Parametric Study. Procedia Manufacturing, 47:154-161, (2020).
DOI: 10.1016/j.promfg.2020.04.160
Google Scholar
[7]
H.O. Werner, C. Stern, and K. Weidenmann. Location-Dependent Mechanical Properties of In Situ Polymerized Three-Dimensional Fiber-Metal Laminates. Key Engineering Materials, 809:231-236, (2019).
DOI: 10.4028/www.scientific.net/kem.809.231
Google Scholar
[8]
R. Arbter, J. M. Beraud, C. Binetruy, and et al. Experimental determination of the permeability of textiles: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 42(9):1157-1168, (2011).
DOI: 10.1016/j.compositesa.2011.04.021
Google Scholar
[9]
N. Vernet, E. Ruiz, S. Advani, and et al. Experimental determination of the permeability of engineering textiles: Benchmark II. Composites Part A: Applied Science and Manufacturing, 61:172-184, (2014).
Google Scholar
[10]
F. J. Schirmaier, D. Dörr, F. Henning, and L. Kärger. A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF). Composites Part A: Applied Science and Manufacturing, 102:322-335, (2017).
DOI: 10.1016/j.compositesa.2017.08.009
Google Scholar
[11]
C. T. Poppe, C. Krauß, F. Albrecht, and L. Kärger. A 3D process simulation model for wet compression moulding. Composites Part A, 145:106379, (2021).
DOI: 10.1016/j.compositesa.2021.106379
Google Scholar
[12]
A. Willems. Forming simulations of textile reinforced composite shell structures. Doctoral thesis, Katholieke Universiteit Leuven, Herverlee, Belgium, (2008).
Google Scholar
[13]
S. P. Haanappel, R.H.W. ten Thije, U. Sachs, B. Rietman, and R. Akkerman. Formability analyses of uni-directional and textile reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 56:80-92, (2014).
DOI: 10.1016/j.compositesa.2013.09.009
Google Scholar
[14]
P. Boisse, N. Naouar, and A. Charmetant. Finite element analysis of composite forming at macroscopic and mesoscopic scale. In Philippe Boisse, editor, Advances in composites manufacturing and process design, Woodhead publishing series in composites science and engineering, pages 297-315. Woodhead Publishing, Cambridge, UK, (2015).
DOI: 10.1016/b978-1-78242-307-2.00014-2
Google Scholar
[15]
P. Boisse, J. Colmars, N. Hamila, N. Naouar, and Q. Steer. Bending and wrinkling of composite fiber preforms and prepregs. a review and new developments in the draping simulations. Composites Part B: Engineering, 141:234-249, (2018).
DOI: 10.1016/j.compositesb.2017.12.061
Google Scholar
[16]
D. Dörr, F.J. Schirmaier, F. Henning, and L. Kärger. A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites. Composites Part A: Applied Science and Manufacturing, 94:113-123, (2017).
DOI: 10.1016/j.compositesa.2016.11.027
Google Scholar
[17]
D. Dörr, F. Henning, and L. Kärger. Nonlinear hyperviscoelastic modelling of intra-ply deformation behaviour in finite element forming simulation of continuously fibre-reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 109:585-596, 2018.[18] P. Boisse, Y. Aimène, A. Dogui, S. Dridi, S. Gatouillat, N. Hamila, M. Aurangzeb Khan, T. Mabrouki, F. Morestin, and E. Vidal-Sallé. Hypoelastic, hyperelastic, discrete and semidiscrete approaches for textile composite reinforcement forming. International Journal of Material Forming, 3(2):1229-1240, (2010).
DOI: 10.1007/s12289-009-0664-9
Google Scholar
[19]
P. Bussetta and N. Correia. Numerical forming of continuous fibre reinforced composite material: A review. Composites Part A: Applied Science and Manufacturing, 113:12-31, (2018).
DOI: 10.1016/j.compositesa.2018.07.010
Google Scholar
[20]
P. Ermanni, C. Di Fratta, and F. Trochu. Molding: Liquid Composite Molding (LCM). In Luigi Nicolais, Assunta Borzacchiello, and Stuart M. Lee, editors, Encyclopedia of composites. Wiley online library, [S.l.], (2012).
DOI: 10.1002/9781118097298.weoc153
Google Scholar
[21]
C.D. Rudd, A.C. Long, K.N. Kendall, C.G.E. Mangin. Liquid moulding technologies: Resin transfer moulding, structural reaction injection moulding and related processing techniques. Woodhead, Cambridge, (1997).
DOI: 10.1533/9781845695446.1
Google Scholar
[22]
P. Celle, S. Drapier, and J.M. Bergheau. Numerical aspects of fluid infusion inside a compressible porous medium undergoing large strains. Revue européenne de mécanique numérique, 17(5- 6-7):819-827, (2008).
DOI: 10.13052/remn.17.819-827
Google Scholar
[23]
J. Bergstrom. Mechanics of solid polymers: Theory and computational modeling. William Andrew is an imprint of Elsevier, Amsterdam, first edition edition, (2015).
Google Scholar
[24]
A. Bernath, L. Kärger, and F. Henning. Accurate Cure Modeling for Isothermal Processing of Fast Curing Epoxy Resins. Polymers, 8(11):390, (2016).
DOI: 10.3390/polym8110390
Google Scholar
[25]
K. M. Pillai, C. L. Tucker, and F. R. Phelan. Numerical simulation of injection/compression liquid composite molding. Part 2: Preform compression. Composites Part A: Applied Science and Manufacturing, 32(2):207-220, (2001).
DOI: 10.1016/s1359-835x(00)00137-8
Google Scholar
[26]
F. Henning, L. Kärger, D. Dörr, F.J. Schirmaier, J. Seuffert, and A. Bernath. Fast processing and continuous simulation of automotive structural composite components. Composites Science and Technology, 171:261-279, (2019).
DOI: 10.1016/j.compscitech.2018.12.007
Google Scholar
[27]
J. Seuffert, P. Rosenberg, L. Kärger, F. Henning, M.H. Kothmann, and G. Deinzer. Experimental and numerical investigations of pressure-controlled resin transfer molding (PC-RTM). Advanced Manufacturing: Polymer & Composites Science, 6(3):154-163, (2020).
DOI: 10.1080/20550340.2020.1805689
Google Scholar
[28]
J. Merotte, P. Simacek, and S.G. Advani. Resin flow analysis with fiber preform deformation in through thickness direction during Compression Resin Transfer Molding. Composites Part A: Applied Science and Manufacturing, 41(7):881-887, (2010).
DOI: 10.1016/j.compositesa.2010.03.001
Google Scholar
[29]
M. V. Bruschke and S. G. Advani. A finite element/control volume approach to mold filling in anisotropic porous media. Polymer Composites, 11(6):398-405, (1990).
DOI: 10.1002/pc.750110613
Google Scholar
[30]
M. V. Bruschke and S. G. Advani. A numerical approach to model non-isothermal viscous flow through fibrous media with free surfaces. International Journal for Numerical Methods in Fluids, 19(7):575-603, (1994).
DOI: 10.1002/fld.1650190704
Google Scholar
[31]
F. Trochu, E. Ruiz, V. Achim, and S. Soukane. Advanced numerical simulation of liquid composite molding for process analysis and optimization. Composites Part A: Applied Science and Manufacturing, 37(6):890-902, 2006.[32] T.J.R. Hughes, A. Masud, and J. Wan. A stabilized mixed discontinuous Galerkin method for Darcy flow. Computer Methods in Applied Mechanics and Engineering, 195(25-28):3347-3381, (2006).
DOI: 10.1016/j.compositesa.2005.06.003
Google Scholar
[33]
C.T. Poppe, F. Albrecht, C. Krauß, and L. Kärger. A 3D Modelling Approach for Fluid Progression during Process Simulation of Wet Compression Moulding - Motivation and Approach. Procedia Manufacturing, 47:85-92, 2020. 23rd International Conference on Material Forming.
DOI: 10.1016/j.promfg.2020.04.141
Google Scholar
[34]
C.T. Poppe. Process simulation of wet compression moulding for continuous fibre-reinforced polymers. Doctoral thesis, Karlsruher Institut für Technologie (KIT), (2021).
Google Scholar
[35]
C. Poppe, D. Dörr, F. Henning, and L. Kärger. A 2D modeling approach for fluid propagation during FE-forming simulation of continuously reinforced composites in wet compression moulding. AIP Conference Proceedings, page 020022. Author(s), (2018).
DOI: 10.1063/1.5034823
Google Scholar
[36]
T. Trzepiecinski and H. Lemu. Effect of Computational Parameters on Springback Prediction by Numerical Simulation. Metals, 7(9):380, (2017).
DOI: 10.3390/met7090380
Google Scholar
[37]
P. Potluri and T. V. Sagar. Compaction modelling of textile preforms for composite structures. Composite Structures, 86(1):177-185, (2008).
DOI: 10.1016/j.compstruct.2008.03.019
Google Scholar
[38]
J.P.-H. Belnoue, M.A. Valverde, M. Onoufriou, X. Sun, D.S. Ivanov, and S.R. Hallett. On the physical relevance of power law-based equations to describe the compaction behaviour of resin infused fibrous materials. International Journal of Mechanical Sciences, 199:106425, (2021).
DOI: 10.1016/j.ijmecsci.2021.106425
Google Scholar