Towards 3D Process Simulation for In Situ Hybridization of Fiber-Metal-Laminates (FML)

Article Preview

Abstract:

Fiber-metal-laminates (FML) provide excellent fatigue behavior, damage tolerant properties, and inherent corrosion resistance.To speed up manufacturing and simultaneously increase the geometrical complexity of the produced FML parts, Mennecart et al. proposed a new single-step process combining deep-drawing with infiltration (HY-LCM). Although the first experimental results are promising, the process involves several challenges, mainly originating from the Fluid-Structure-Interaction (FSI) between deep-drawing and infiltration. This work aims to investigate those challenges to comprehend the underlying mechanisms. A new close-to-process test setup is proposed on the experimental side, combining deep-drawing of a hybrid stack with a linear infiltration. A process simulation model for FMLs is presented on the numerical side, enabling a prediction of the dry molding forces, local Fiber Volume Content (FVC) within the three glass fiber (GF) interlayers, and simultaneous fluid progression. The numerical results show that the local deformation of the hybrid stack and required forces are predictable. Furthermore, lateral sealing of the hybrid stacks leads to deviations from the intended initially one-dimensional fluid progression. Eventually, the numerical results demonstrate that most flow resistance originates from geometrically critical locations. Future experimental and numerical work will combine these insights to focus on the flow evaluation during deformation and a successful part-level application.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] T. Mennecart, H. Werner, N. Ben Khalifa, and K. Weidenmann. Developments and Analyses of Alternative Processes for the Manufacturing of Fiber Metal Laminates. In Proceedings of the ASME 13th International Manufacturing Science and Engineering Conference -2018-, New York, N.Y., 2018. The American Society of Mechanical Engineers.

DOI: 10.1115/msec2018-6447

Google Scholar

[2] S. Krishnakumar. Fiber Metal Laminates - The Synthesis of Metals and Composites. Materials and Manufacturing Processes, 9(2):295-354, (1994).

DOI: 10.1080/10426919408934905

Google Scholar

[3] A. Asundi and Alta Y.N. Choi. Fiber metal laminates: An advanced material for future aircraft. Journal of Materials Processing Technology, 63(1-3):384-394, 1997.[4] M. R. Sadeghi, Ali A. A. Jeddi, and S. Shaikhzadeh Najar. Theoretical and experimental analysis of bending rigidity of plain and twill woven fabrics. Journal of the Textile Institute, 108(10):1700-1706, (2017).

DOI: 10.1080/00405000.2017.1280760

Google Scholar

[5] T. Mennecart, L. Hiegemann, and N.B. Khalifa. Analysis of the forming behaviour of in-situ drawn sandwich sheets. Procedia Engineering, 207:890-895, (2017).

DOI: 10.1016/j.proeng.2017.10.847

Google Scholar

[6] H.O. Werner, C.T. Poppe, F. Henning, and L. Kärger. Material Modeling in Forming Simulation of Three-Dimensional Fiber-Metal-Laminates - A Parametric Study. Procedia Manufacturing, 47:154-161, (2020).

DOI: 10.1016/j.promfg.2020.04.160

Google Scholar

[7] H.O. Werner, C. Stern, and K. Weidenmann. Location-Dependent Mechanical Properties of In Situ Polymerized Three-Dimensional Fiber-Metal Laminates. Key Engineering Materials, 809:231-236, (2019).

DOI: 10.4028/www.scientific.net/kem.809.231

Google Scholar

[8] R. Arbter, J. M. Beraud, C. Binetruy, and et al. Experimental determination of the permeability of textiles: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 42(9):1157-1168, (2011).

DOI: 10.1016/j.compositesa.2011.04.021

Google Scholar

[9] N. Vernet, E. Ruiz, S. Advani, and et al. Experimental determination of the permeability of engineering textiles: Benchmark II. Composites Part A: Applied Science and Manufacturing, 61:172-184, (2014).

Google Scholar

[10] F. J. Schirmaier, D. Dörr, F. Henning, and L. Kärger. A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF). Composites Part A: Applied Science and Manufacturing, 102:322-335, (2017).

DOI: 10.1016/j.compositesa.2017.08.009

Google Scholar

[11] C. T. Poppe, C. Krauß, F. Albrecht, and L. Kärger. A 3D process simulation model for wet compression moulding. Composites Part A, 145:106379, (2021).

DOI: 10.1016/j.compositesa.2021.106379

Google Scholar

[12] A. Willems. Forming simulations of textile reinforced composite shell structures. Doctoral thesis, Katholieke Universiteit Leuven, Herverlee, Belgium, (2008).

Google Scholar

[13] S. P. Haanappel, R.H.W. ten Thije, U. Sachs, B. Rietman, and R. Akkerman. Formability analyses of uni-directional and textile reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 56:80-92, (2014).

DOI: 10.1016/j.compositesa.2013.09.009

Google Scholar

[14] P. Boisse, N. Naouar, and A. Charmetant. Finite element analysis of composite forming at macroscopic and mesoscopic scale. In Philippe Boisse, editor, Advances in composites manufacturing and process design, Woodhead publishing series in composites science and engineering, pages 297-315. Woodhead Publishing, Cambridge, UK, (2015).

DOI: 10.1016/b978-1-78242-307-2.00014-2

Google Scholar

[15] P. Boisse, J. Colmars, N. Hamila, N. Naouar, and Q. Steer. Bending and wrinkling of composite fiber preforms and prepregs. a review and new developments in the draping simulations. Composites Part B: Engineering, 141:234-249, (2018).

DOI: 10.1016/j.compositesb.2017.12.061

Google Scholar

[16] D. Dörr, F.J. Schirmaier, F. Henning, and L. Kärger. A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites. Composites Part A: Applied Science and Manufacturing, 94:113-123, (2017).

DOI: 10.1016/j.compositesa.2016.11.027

Google Scholar

[17] D. Dörr, F. Henning, and L. Kärger. Nonlinear hyperviscoelastic modelling of intra-ply deformation behaviour in finite element forming simulation of continuously fibre-reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing, 109:585-596, 2018.[18] P. Boisse, Y. Aimène, A. Dogui, S. Dridi, S. Gatouillat, N. Hamila, M. Aurangzeb Khan, T. Mabrouki, F. Morestin, and E. Vidal-Sallé. Hypoelastic, hyperelastic, discrete and semidiscrete approaches for textile composite reinforcement forming. International Journal of Material Forming, 3(2):1229-1240, (2010).

DOI: 10.1007/s12289-009-0664-9

Google Scholar

[19] P. Bussetta and N. Correia. Numerical forming of continuous fibre reinforced composite material: A review. Composites Part A: Applied Science and Manufacturing, 113:12-31, (2018).

DOI: 10.1016/j.compositesa.2018.07.010

Google Scholar

[20] P. Ermanni, C. Di Fratta, and F. Trochu. Molding: Liquid Composite Molding (LCM). In Luigi Nicolais, Assunta Borzacchiello, and Stuart M. Lee, editors, Encyclopedia of composites. Wiley online library, [S.l.], (2012).

DOI: 10.1002/9781118097298.weoc153

Google Scholar

[21] C.D. Rudd, A.C. Long, K.N. Kendall, C.G.E. Mangin. Liquid moulding technologies: Resin transfer moulding, structural reaction injection moulding and related processing techniques. Woodhead, Cambridge, (1997).

DOI: 10.1533/9781845695446.1

Google Scholar

[22] P. Celle, S. Drapier, and J.M. Bergheau. Numerical aspects of fluid infusion inside a compressible porous medium undergoing large strains. Revue européenne de mécanique numérique, 17(5- 6-7):819-827, (2008).

DOI: 10.13052/remn.17.819-827

Google Scholar

[23] J. Bergstrom. Mechanics of solid polymers: Theory and computational modeling. William Andrew is an imprint of Elsevier, Amsterdam, first edition edition, (2015).

Google Scholar

[24] A. Bernath, L. Kärger, and F. Henning. Accurate Cure Modeling for Isothermal Processing of Fast Curing Epoxy Resins. Polymers, 8(11):390, (2016).

DOI: 10.3390/polym8110390

Google Scholar

[25] K. M. Pillai, C. L. Tucker, and F. R. Phelan. Numerical simulation of injection/compression liquid composite molding. Part 2: Preform compression. Composites Part A: Applied Science and Manufacturing, 32(2):207-220, (2001).

DOI: 10.1016/s1359-835x(00)00137-8

Google Scholar

[26] F. Henning, L. Kärger, D. Dörr, F.J. Schirmaier, J. Seuffert, and A. Bernath. Fast processing and continuous simulation of automotive structural composite components. Composites Science and Technology, 171:261-279, (2019).

DOI: 10.1016/j.compscitech.2018.12.007

Google Scholar

[27] J. Seuffert, P. Rosenberg, L. Kärger, F. Henning, M.H. Kothmann, and G. Deinzer. Experimental and numerical investigations of pressure-controlled resin transfer molding (PC-RTM). Advanced Manufacturing: Polymer & Composites Science, 6(3):154-163, (2020).

DOI: 10.1080/20550340.2020.1805689

Google Scholar

[28] J. Merotte, P. Simacek, and S.G. Advani. Resin flow analysis with fiber preform deformation in through thickness direction during Compression Resin Transfer Molding. Composites Part A: Applied Science and Manufacturing, 41(7):881-887, (2010).

DOI: 10.1016/j.compositesa.2010.03.001

Google Scholar

[29] M. V. Bruschke and S. G. Advani. A finite element/control volume approach to mold filling in anisotropic porous media. Polymer Composites, 11(6):398-405, (1990).

DOI: 10.1002/pc.750110613

Google Scholar

[30] M. V. Bruschke and S. G. Advani. A numerical approach to model non-isothermal viscous flow through fibrous media with free surfaces. International Journal for Numerical Methods in Fluids, 19(7):575-603, (1994).

DOI: 10.1002/fld.1650190704

Google Scholar

[31] F. Trochu, E. Ruiz, V. Achim, and S. Soukane. Advanced numerical simulation of liquid composite molding for process analysis and optimization. Composites Part A: Applied Science and Manufacturing, 37(6):890-902, 2006.[32] T.J.R. Hughes, A. Masud, and J. Wan. A stabilized mixed discontinuous Galerkin method for Darcy flow. Computer Methods in Applied Mechanics and Engineering, 195(25-28):3347-3381, (2006).

DOI: 10.1016/j.compositesa.2005.06.003

Google Scholar

[33] C.T. Poppe, F. Albrecht, C. Krauß, and L. Kärger. A 3D Modelling Approach for Fluid Progression during Process Simulation of Wet Compression Moulding - Motivation and Approach. Procedia Manufacturing, 47:85-92, 2020. 23rd International Conference on Material Forming.

DOI: 10.1016/j.promfg.2020.04.141

Google Scholar

[34] C.T. Poppe. Process simulation of wet compression moulding for continuous fibre-reinforced polymers. Doctoral thesis, Karlsruher Institut für Technologie (KIT), (2021).

Google Scholar

[35] C. Poppe, D. Dörr, F. Henning, and L. Kärger. A 2D modeling approach for fluid propagation during FE-forming simulation of continuously reinforced composites in wet compression moulding. AIP Conference Proceedings, page 020022. Author(s), (2018).

DOI: 10.1063/1.5034823

Google Scholar

[36] T. Trzepiecinski and H. Lemu. Effect of Computational Parameters on Springback Prediction by Numerical Simulation. Metals, 7(9):380, (2017).

DOI: 10.3390/met7090380

Google Scholar

[37] P. Potluri and T. V. Sagar. Compaction modelling of textile preforms for composite structures. Composite Structures, 86(1):177-185, (2008).

DOI: 10.1016/j.compstruct.2008.03.019

Google Scholar

[38] J.P.-H. Belnoue, M.A. Valverde, M. Onoufriou, X. Sun, D.S. Ivanov, and S.R. Hallett. On the physical relevance of power law-based equations to describe the compaction behaviour of resin infused fibrous materials. International Journal of Mechanical Sciences, 199:106425, (2021).

DOI: 10.1016/j.ijmecsci.2021.106425

Google Scholar