[1]
M. A. Turk, B. Vermes, A. J. Thompson, J. P. H. Belnoue, S. R. Hallett, and D. S. Ivanov, Mitigating forming defects by local modification of dry preforms,, Compos. Part A Appl. Sci. Manuf., no. October, p.105643, (2019).
DOI: 10.1016/j.compositesa.2019.105643
Google Scholar
[2]
S. Lomov, Non-Crimp Fabric Composites: Manufacturing, Properties and Applications. Woodhead Publishing Series in Composites Science and Engineering, (2016).
Google Scholar
[3]
A. J. Thompson, B. El Said, J. P. Belnoue, and S. R. Hallett, Modelling process induced deformations in 0 / 90 non-crimp fabrics at the,, Compos. Sci. Technol., vol. 168, no. January, p.104–110, (2018).
DOI: 10.1016/j.compscitech.2018.08.029
Google Scholar
[4]
D. Adams, Composites testing as part of a building block approach, Part 2: Upper building block levels,, Composites World, Nov-(2021).
Google Scholar
[5]
S. Allaoui, C. Cellard, and G. Hivet, Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms,, Compos. Part A Appl. Sci. Manuf., vol. 68, p.336–345, (2015).
DOI: 10.1016/j.compositesa.2014.10.017
Google Scholar
[6]
F. Nosrat Nezami, T. Gereke, and C. Cherif, Active forming manipulation of composite reinforcements for the suppression of forming defects,, Compos. Part A Appl. Sci. Manuf., vol. 99, p.94–101, (2017).
DOI: 10.1016/j.compositesa.2017.04.011
Google Scholar
[7]
E. Capelle, P. Ouagne, D. Soulat, and D. Duriatti, Composites : Part B Complex shape forming of flax woven fabrics : Design of specific blank-holder shapes to prevent defects,, Compos. PART B, vol. 62, p.29–36, (2014).
DOI: 10.1016/j.compositesb.2014.02.007
Google Scholar
[8]
P. Hallander, M. Akermo, C. Mattei, M. Petersson, and T. Nyman, Composites : Part A An experimental study of mechanisms behind wrinkle development during forming of composite laminates,, Compos. Part A, vol. 50, p.54–64, (2013).
DOI: 10.1016/j.compositesa.2013.03.013
Google Scholar
[9]
Airbus, A320neo: The most successful commercial aircraft family ever., [Online]. Available: https://aircraft.airbus.com/en/aircraft/a320/a320neo.
DOI: 10.1002/9781119505433.ch1
Google Scholar
[10]
D. I. N. Spec, A. Pr, and T. Deutsch, DRAPETEST Patent,, no. November, (2015).
Google Scholar
[11]
G. Bardl et al., Analysis of the 3D draping behavior of carbon fiber non-crimp fabrics with eddy current technique,, Compos. Part B Eng., vol. 132, p.49–60, (2018).
DOI: 10.1016/j.compositesb.2017.08.007
Google Scholar
[12]
F. Nosrat, T. Gereke, and C. Cherif, Composites : Part A Analyses of interaction mechanisms during forming of multilayer carbon woven fabrics for composite applications,, Compos. PART A, vol. 84, p.406–416, (2016).
DOI: 10.1016/j.compositesa.2016.02.023
Google Scholar
[13]
P. Hallander, J. Sjölander, M. Petersson, and M. Åkermo, Interface manipulation towards wrinkle-free forming of stacked UD prepreg layers,, Compos. Part A Appl. Sci. Manuf., vol. 90, p.340–348, (2016).
DOI: 10.1016/j.compositesa.2016.07.013
Google Scholar
[14]
P. Hallander, J. Sjölander, and M. Åkermo, Forming induced wrinkling of composite laminates with mixed ply material properties; an experimental study,, Compos. Part A Appl. Sci. Manuf., vol. 78, p.234–245, (2015).
DOI: 10.1016/j.compositesa.2015.08.025
Google Scholar
[15]
P. Harrison, R. Gomes, and N. Curado-correia, Composites : Part A Press forming a 0 / 90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry,, Compos. Part A, vol. 54, p.56–69, (2013).
DOI: 10.1016/j.compositesa.2013.06.014
Google Scholar
[16]
M. A. Khan, T. Mabrouki, and P. Boisse, Journal of Materials Processing Technology Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour . Application to the double dome benchmark,, vol. 210, p.378–388, (2010).
DOI: 10.1016/j.jmatprotec.2009.09.027
Google Scholar
[17]
M. A. Turk, B. Vermes, A. J. Thompson, J. P.-H. Belnoue, S. R. Hallett, and D. S. Ivanov, Mitigating forming defects by local modification of dry preforms,, Compos. Part A Appl. Sci. Manuf., no. October, p.105643, (2019).
DOI: 10.1016/j.compositesa.2019.105643
Google Scholar
[18]
J. V Viisainen and M. P. F. Sutcliffe, Characterising the variability in wrinkling during the preforming of non-crimp fabrics,, Compos. Part A, vol. 149, no. April, p.106536, (2021).
DOI: 10.1016/j.compositesa.2021.106536
Google Scholar
[19]
E. Guzman-Maldonado, P. Wang, N. Hamila, and P. Boisse, Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites,, Compos. Struct., vol. 208, no. April 2018, p.213–223, (2019).
DOI: 10.1016/j.compstruct.2018.10.018
Google Scholar
[20]
K. Tanaka, R. Ushiyama, T. Katayama, S. Enoki, and H. Sakamoto, Formability evaluation of carbon fiber NCF by a non-contact 3D strain measurement system and the effects of blank folder force on its formability,, WIT Trans. Built Environ., vol. 137, p.317–326, (2014).
DOI: 10.2495/hpsm140301
Google Scholar
[21]
S. Chen, O. P. L. Mcgregor, L. T. Harper, A. Endruweit, and N. A. Warrior, Composites : Part A Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern,, Compos. Part A, vol. 91, p.156–167, (2016).
DOI: 10.1016/j.compositesa.2016.09.016
Google Scholar
[22]
P. Hallander, M. Akermo, C. Mattei, M. Petersson, and T. Nyman, An experimental study of mechanisms behind wrinkle development during forming of composite laminates,, Compos. Part A Appl. Sci. Manuf., vol. 50, p.54–64, (2013).
DOI: 10.1016/j.compositesa.2013.03.013
Google Scholar
[23]
S. Chen et al., Double diaphragm forming simulation for complex composite structures,, Compos. Part A Appl. Sci. Manuf., vol. 95, p.346–358, (2017).
Google Scholar