Large Scale Forming of Non-Crimp Fabrics for Aerostructures

Article Preview

Abstract:

The increased production rate targets of the aerospace industry have driven the development of dry fibre infusion processes. Biaxial Non-Crimp Fabrics (NCFs) are considered in this work due to their potential high deposition rates and higher mechanical performance to woven fabrics. Forming is an integral step prior to infusion and curing. Understanding the forming behaviour of NCFs at scale is therefore key to achieving high quality parts at high rates. To investigate the draping and shearing behaviour of NCFs, geometries with complexities associated with the composite structure are used. This study presents an experimental campaign on two large scale (2 metres in span) geometries with complexities seen in primary aerostructures. The combination of features such as ramps and curvature with corner radii leads to distinctive out-of-plane wrinkling. The relationship between geometry, material and resulting preform quality is observed through the use of 3D scans. Results show differing preform quality in terms of wrinkling phenomena, showing the importance of geometry of choice for material drapability tests at an industrial scale.

You have full access to the following eBook

Info:

Periodical:

Pages:

1387-1398

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] M. A. Turk, B. Vermes, A. J. Thompson, J. P. H. Belnoue, S. R. Hallett, and D. S. Ivanov, Mitigating forming defects by local modification of dry preforms,, Compos. Part A Appl. Sci. Manuf., no. October, p.105643, (2019).

DOI: 10.1016/j.compositesa.2019.105643

Google Scholar

[2] S. Lomov, Non-Crimp Fabric Composites: Manufacturing, Properties and Applications. Woodhead Publishing Series in Composites Science and Engineering, (2016).

Google Scholar

[3] A. J. Thompson, B. El Said, J. P. Belnoue, and S. R. Hallett, Modelling process induced deformations in 0 / 90 non-crimp fabrics at the,, Compos. Sci. Technol., vol. 168, no. January, p.104–110, (2018).

DOI: 10.1016/j.compscitech.2018.08.029

Google Scholar

[4] D. Adams, Composites testing as part of a building block approach, Part 2: Upper building block levels,, Composites World, Nov-(2021).

Google Scholar

[5] S. Allaoui, C. Cellard, and G. Hivet, Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms,, Compos. Part A Appl. Sci. Manuf., vol. 68, p.336–345, (2015).

DOI: 10.1016/j.compositesa.2014.10.017

Google Scholar

[6] F. Nosrat Nezami, T. Gereke, and C. Cherif, Active forming manipulation of composite reinforcements for the suppression of forming defects,, Compos. Part A Appl. Sci. Manuf., vol. 99, p.94–101, (2017).

DOI: 10.1016/j.compositesa.2017.04.011

Google Scholar

[7] E. Capelle, P. Ouagne, D. Soulat, and D. Duriatti, Composites : Part B Complex shape forming of flax woven fabrics : Design of specific blank-holder shapes to prevent defects,, Compos. PART B, vol. 62, p.29–36, (2014).

DOI: 10.1016/j.compositesb.2014.02.007

Google Scholar

[8] P. Hallander, M. Akermo, C. Mattei, M. Petersson, and T. Nyman, Composites : Part A An experimental study of mechanisms behind wrinkle development during forming of composite laminates,, Compos. Part A, vol. 50, p.54–64, (2013).

DOI: 10.1016/j.compositesa.2013.03.013

Google Scholar

[9] Airbus, A320neo: The most successful commercial aircraft family ever., [Online]. Available: https://aircraft.airbus.com/en/aircraft/a320/a320neo.

DOI: 10.1002/9781119505433.ch1

Google Scholar

[10] D. I. N. Spec, A. Pr, and T. Deutsch, DRAPETEST Patent,, no. November, (2015).

Google Scholar

[11] G. Bardl et al., Analysis of the 3D draping behavior of carbon fiber non-crimp fabrics with eddy current technique,, Compos. Part B Eng., vol. 132, p.49–60, (2018).

DOI: 10.1016/j.compositesb.2017.08.007

Google Scholar

[12] F. Nosrat, T. Gereke, and C. Cherif, Composites : Part A Analyses of interaction mechanisms during forming of multilayer carbon woven fabrics for composite applications,, Compos. PART A, vol. 84, p.406–416, (2016).

DOI: 10.1016/j.compositesa.2016.02.023

Google Scholar

[13] P. Hallander, J. Sjölander, M. Petersson, and M. Åkermo, Interface manipulation towards wrinkle-free forming of stacked UD prepreg layers,, Compos. Part A Appl. Sci. Manuf., vol. 90, p.340–348, (2016).

DOI: 10.1016/j.compositesa.2016.07.013

Google Scholar

[14] P. Hallander, J. Sjölander, and M. Åkermo, Forming induced wrinkling of composite laminates with mixed ply material properties; an experimental study,, Compos. Part A Appl. Sci. Manuf., vol. 78, p.234–245, (2015).

DOI: 10.1016/j.compositesa.2015.08.025

Google Scholar

[15] P. Harrison, R. Gomes, and N. Curado-correia, Composites : Part A Press forming a 0 / 90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry,, Compos. Part A, vol. 54, p.56–69, (2013).

DOI: 10.1016/j.compositesa.2013.06.014

Google Scholar

[16] M. A. Khan, T. Mabrouki, and P. Boisse, Journal of Materials Processing Technology Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour . Application to the double dome benchmark,, vol. 210, p.378–388, (2010).

DOI: 10.1016/j.jmatprotec.2009.09.027

Google Scholar

[17] M. A. Turk, B. Vermes, A. J. Thompson, J. P.-H. Belnoue, S. R. Hallett, and D. S. Ivanov, Mitigating forming defects by local modification of dry preforms,, Compos. Part A Appl. Sci. Manuf., no. October, p.105643, (2019).

DOI: 10.1016/j.compositesa.2019.105643

Google Scholar

[18] J. V Viisainen and M. P. F. Sutcliffe, Characterising the variability in wrinkling during the preforming of non-crimp fabrics,, Compos. Part A, vol. 149, no. April, p.106536, (2021).

DOI: 10.1016/j.compositesa.2021.106536

Google Scholar

[19] E. Guzman-Maldonado, P. Wang, N. Hamila, and P. Boisse, Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites,, Compos. Struct., vol. 208, no. April 2018, p.213–223, (2019).

DOI: 10.1016/j.compstruct.2018.10.018

Google Scholar

[20] K. Tanaka, R. Ushiyama, T. Katayama, S. Enoki, and H. Sakamoto, Formability evaluation of carbon fiber NCF by a non-contact 3D strain measurement system and the effects of blank folder force on its formability,, WIT Trans. Built Environ., vol. 137, p.317–326, (2014).

DOI: 10.2495/hpsm140301

Google Scholar

[21] S. Chen, O. P. L. Mcgregor, L. T. Harper, A. Endruweit, and N. A. Warrior, Composites : Part A Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern,, Compos. Part A, vol. 91, p.156–167, (2016).

DOI: 10.1016/j.compositesa.2016.09.016

Google Scholar

[22] P. Hallander, M. Akermo, C. Mattei, M. Petersson, and T. Nyman, An experimental study of mechanisms behind wrinkle development during forming of composite laminates,, Compos. Part A Appl. Sci. Manuf., vol. 50, p.54–64, (2013).

DOI: 10.1016/j.compositesa.2013.03.013

Google Scholar

[23] S. Chen et al., Double diaphragm forming simulation for complex composite structures,, Compos. Part A Appl. Sci. Manuf., vol. 95, p.346–358, (2017).

Google Scholar