[1]
X. Wang, J. Cao, On the prediction of side-wall wrinkling in sheet metal forming processes, International Journal of Mechanical Sciences 42 (2000) 2369-2394.
DOI: 10.1016/s0020-7403(99)00078-8
Google Scholar
[2]
A. Agrawal, N.V. Reddy, P. Dixit, Determination of optimum process parameters for wrinkle free products in deep drawing process, Journal of Materials Processing Technology 191 (2007) 51-54.
DOI: 10.1016/j.jmatprotec.2007.03.050
Google Scholar
[3]
B. Kaftanoglu, Plastic analysis of flange wrinkling in axisymmetrical deep drawing, In: Proceedings of the Twenty-First International Machine Tool Design and Research Conference (1981) 21–28.
DOI: 10.1007/978-1-349-05861-7_4
Google Scholar
[4]
M.A. Shafaat, M. Abbasi, M. Ketabchi, Investigation into wall wrinkling in deep drawing process of conical cups, Journal of Materials Processing Technology 211 (2011) 1783-1795.
DOI: 10.1016/j.jmatprotec.2011.05.026
Google Scholar
[5]
B.W. Senior, Flange wrinkling in deep-drawing operations, Journal of the Mechanics and Physics of Solids 4 (1956) 235-246.
DOI: 10.1016/0022-5096(56)90032-1
Google Scholar
[6]
J.D.M. Correia, G. Ferron, Wrinkling of anisotropic metal sheets under deep-drawing: analytical and numerical study, Journal of Materials Processing Technology 155 (2004) 1604-1610.
DOI: 10.1016/j.jmatprotec.2004.04.270
Google Scholar
[7]
E. Chu, Y. Xu, An elastoplastic analysis of flange wrinkling in deep drawing process, International Journal of Mechanical Sciences 43 (2001) 1421-1440.
DOI: 10.1016/s0020-7403(00)00091-6
Google Scholar
[8]
S.R. Dal, Analysis of wrinkling in deep drawing processes, M.Sc. Thesis, Middle East Technical University, Ankara, Turkey (2016).
Google Scholar
[9]
B. Plunkett, O. Cazacu, F. Barlat, Orthotropic yield criteria for description of the anisotropy intension and compression of sheet metals, Int J Plasticity 24 (2008) 847–866.
DOI: 10.1016/j.ijplas.2007.07.013
Google Scholar
[10]
J-H. Yoon, O. Cazacu, J.W. Yoon, R.E. Dick, Earing predictions for strongly textured aluminum sheets, International Journal of Mechanical Sciences 52 (2010) 1563-1578.
DOI: 10.1016/j.ijmecsci.2010.07.005
Google Scholar
[11]
D-S. Comsa, D. Banabic, Plane stress yield criterion for highly anisotropic sheet metals. In: 7th International Conference NUMISHEET, (2008).
Google Scholar
[12]
F. Dunne, N. Petrinic, Introduction to Computational Plasticity, Oxford, (2005).
Google Scholar
[13]
L. Moreira, G. Ferron, G. Ferran, Experimental and numerical analysis of the cup drawing test for orthotropic metal sheets, Journal of materials processing technology 108 (2000) 78-86.
DOI: 10.1016/s0924-0136(00)00660-9
Google Scholar
[14]
K. Lange, M. Herrmann, P. Keck, M. Wilhelm, Application of an elastoplastic finite-element code to the simulation of metal forming processes, Journal of Materials Processing Technology 27 (1991) 239-261.
DOI: 10.1016/0924-0136(91)90056-k
Google Scholar
[15]
P. Vacher, R. Arrieux, L. Tabourot, Analysis of a criterion of deep drawing operation capability for thin orthotropic sheets, Journal of Materials Processing Technology 78 (1998) 190-197.
DOI: 10.1016/s0924-0136(97)00486-x
Google Scholar
[16]
D. Neto, M. Oliveira, R. Dick, P. Barros, J. Alves, L. Menezes, Numerical and experimental analysis of wrinkling during the cup drawing of an aa5042 aluminium alloy, International Journal of Material Forming 10(1) (2017) 125-138.
DOI: 10.1007/s12289-015-1265-4
Google Scholar
[17]
R. Dick, R. Cardoso, M. Paulino, J.W. Yoon, Benchmark 4-wrinkling during cup drawing. In: AIP Conference Proceedings, 1567 (2013) 262–327.
DOI: 10.1063/1.4849984
Google Scholar
[18]
Y. Jia, Y. Bai, Ductile fracture prediction for metal sheets using all-strain-based anisotropic emmc model. International Journal of Mechanical Sciences 115 (2016) 516-531.
DOI: 10.1016/j.ijmecsci.2016.07.022
Google Scholar
[19]
R.E. Dick, J.W. Yoon, Wrinkling during Cup Drawing with NUMISHEET2014 Benchmark Test. Steel Research International 86(8) (2015) 915–921,.
DOI: 10.1002/srin.201500018
Google Scholar