Analysis of Side-Wall Wrinkling in Deep Drawing Processes

Article Preview

Abstract:

Wrinkling, developed due to compressive instability, is one of the main failure modes in deep drawing processes. Depending on the die geometry and blank holder force, it can be observed as flange wrinkling and/or side-wall wrinkling. In this study, side-wall wrinkling in cylindrical cup drawing process is investigated by using different constitutive models that are formed by using CPB06ex2, Hill’48, BBC2008-8p and BBC2008-16p yield criteria with isotropic hardening, and von Mises yield criterion with isotropic, kinematic and combined hardening. Numerical simulations are performed by implementing CPB06ex2, BBC2008-8p and BBC2008-16p models to a commercial finite element code through user subroutines. AA5042-H2 aluminium alloy is selected as a sheet material with 0.2083 mm thickness. In order to verify the developed models, the experimental results of the previous works for wrinkling profile and punch force evolution are employed. The results are compared and presented for the considered yield criteria.

You have full access to the following eBook

Info:

Periodical:

Pages:

732-743

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] X. Wang, J. Cao, On the prediction of side-wall wrinkling in sheet metal forming processes, International Journal of Mechanical Sciences 42 (2000) 2369-2394.

DOI: 10.1016/s0020-7403(99)00078-8

Google Scholar

[2] A. Agrawal, N.V. Reddy, P. Dixit, Determination of optimum process parameters for wrinkle free products in deep drawing process, Journal of Materials Processing Technology 191 (2007) 51-54.

DOI: 10.1016/j.jmatprotec.2007.03.050

Google Scholar

[3] B. Kaftanoglu, Plastic analysis of flange wrinkling in axisymmetrical deep drawing, In: Proceedings of the Twenty-First International Machine Tool Design and Research Conference (1981) 21–28.

DOI: 10.1007/978-1-349-05861-7_4

Google Scholar

[4] M.A. Shafaat, M. Abbasi, M. Ketabchi, Investigation into wall wrinkling in deep drawing process of conical cups, Journal of Materials Processing Technology 211 (2011) 1783-1795.

DOI: 10.1016/j.jmatprotec.2011.05.026

Google Scholar

[5] B.W. Senior, Flange wrinkling in deep-drawing operations, Journal of the Mechanics and Physics of Solids 4 (1956) 235-246.

DOI: 10.1016/0022-5096(56)90032-1

Google Scholar

[6] J.D.M. Correia, G. Ferron, Wrinkling of anisotropic metal sheets under deep-drawing: analytical and numerical study, Journal of Materials Processing Technology 155 (2004) 1604-1610.

DOI: 10.1016/j.jmatprotec.2004.04.270

Google Scholar

[7] E. Chu, Y. Xu, An elastoplastic analysis of flange wrinkling in deep drawing process, International Journal of Mechanical Sciences 43 (2001) 1421-1440.

DOI: 10.1016/s0020-7403(00)00091-6

Google Scholar

[8] S.R. Dal, Analysis of wrinkling in deep drawing processes, M.Sc. Thesis, Middle East Technical University, Ankara, Turkey (2016).

Google Scholar

[9] B. Plunkett, O. Cazacu, F. Barlat, Orthotropic yield criteria for description of the anisotropy intension and compression of sheet metals, Int J Plasticity 24 (2008) 847–866.

DOI: 10.1016/j.ijplas.2007.07.013

Google Scholar

[10] J-H. Yoon, O. Cazacu, J.W. Yoon, R.E. Dick, Earing predictions for strongly textured aluminum sheets, International Journal of Mechanical Sciences 52 (2010) 1563-1578.

DOI: 10.1016/j.ijmecsci.2010.07.005

Google Scholar

[11] D-S. Comsa, D. Banabic, Plane stress yield criterion for highly anisotropic sheet metals. In: 7th International Conference NUMISHEET, (2008).

Google Scholar

[12] F. Dunne, N. Petrinic, Introduction to Computational Plasticity, Oxford, (2005).

Google Scholar

[13] L. Moreira, G. Ferron, G. Ferran, Experimental and numerical analysis of the cup drawing test for orthotropic metal sheets, Journal of materials processing technology 108 (2000) 78-86.

DOI: 10.1016/s0924-0136(00)00660-9

Google Scholar

[14] K. Lange, M. Herrmann, P. Keck, M. Wilhelm, Application of an elastoplastic finite-element code to the simulation of metal forming processes, Journal of Materials Processing Technology 27 (1991) 239-261.

DOI: 10.1016/0924-0136(91)90056-k

Google Scholar

[15] P. Vacher, R. Arrieux, L. Tabourot, Analysis of a criterion of deep drawing operation capability for thin orthotropic sheets, Journal of Materials Processing Technology 78 (1998) 190-197.

DOI: 10.1016/s0924-0136(97)00486-x

Google Scholar

[16] D. Neto, M. Oliveira, R. Dick, P. Barros, J. Alves, L. Menezes, Numerical and experimental analysis of wrinkling during the cup drawing of an aa5042 aluminium alloy, International Journal of Material Forming 10(1) (2017) 125-138.

DOI: 10.1007/s12289-015-1265-4

Google Scholar

[17] R. Dick, R. Cardoso, M. Paulino, J.W. Yoon, Benchmark 4-wrinkling during cup drawing. In: AIP Conference Proceedings, 1567 (2013) 262–327.

DOI: 10.1063/1.4849984

Google Scholar

[18] Y. Jia, Y. Bai, Ductile fracture prediction for metal sheets using all-strain-based anisotropic emmc model. International Journal of Mechanical Sciences 115 (2016) 516-531.

DOI: 10.1016/j.ijmecsci.2016.07.022

Google Scholar

[19] R.E. Dick, J.W. Yoon, Wrinkling during Cup Drawing with NUMISHEET2014 Benchmark Test. Steel Research International 86(8) (2015) 915–921,.

DOI: 10.1002/srin.201500018

Google Scholar