Numerical Modelling of Conventional and Incremental Forming of Thin-Walled Tube

Article Preview

Abstract:

This study presents a numerical analysis of the tube expansion process by conventional tube-end forming versus single point incremental forming (SPIF) using DEFORM. The work includes the assessment of the strain paths within the principal strain space of these processes with respect to the formability limits as well as their evaluation within the equivalent strain versus stress triaxiality space. The results obtained demonstrated that the mechanics of tube flaring process in conventional and incremental forming are substantially different. This analysis of formability in the light of the accumulated equivalent strain and the average stress triaxiality allowed a better understanding of the differences between both processes in terms of the fracture limit strains.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] G. Centeno, M.B. Silva, L.M. Alves, C. Vallellano, P.A.F. Martins, Towards the characterization of fracture in thin-walled tube forming, Int. J. Mech. Sci. 119 (2016) 12–22. https://doi.org/10.1016/j.ijmecsci.2016.10.001.

DOI: 10.1016/j.ijmecsci.2016.10.001

Google Scholar

[2] J.P. Magrinho, G. Centeno, M.B. Silva, C. Vallellano, P.A.F. Martins, On the formability limits of thin-walled tube inversion using different die fillet radii, Thin-Walled Struct. 144 (2019). https://doi.org/10.1016/j.tws.2019.106328.

DOI: 10.1016/j.tws.2019.106328

Google Scholar

[3] J.P. Magrinho, M.B. Silva, G. Centeno, F. Moedas, C. Vallellano, P.A.F. Martins, On the determination of forming limits in thin-walled tubes, Int. J. Mech. Sci. 155 (2019). https://doi.org/10.1016/j.ijmecsci.2019.03.020.

DOI: 10.1016/j.ijmecsci.2019.03.020

Google Scholar

[4] J.P. Magrinho, M.B. Silva, P.A.F. Martins, On the Characterization of Fracture Loci in Thin-Walled Tube Forming, in: Form. Futur. Miner. Met. Mater. Ser., Springer, Cham, 2021: p.113–125. https://doi.org/10.1007/978-3-030-75381-8_9.

Google Scholar

[5] T. McAnulty, J. Jeswiet, M. Doolan, Formability in single point incremental forming: A comparative analysis of the state of the art, CIRP J. Manuf. Sci. Technol. 16 (2017) 43–54. https://doi.org/10.1016/j.cirpj.2016.07.003.

DOI: 10.1016/j.cirpj.2016.07.003

Google Scholar

[6] X. Zhan, Z. Wang, M. Li, Q. Hu, J. Chen, Investigations on failure-to-fracture mechanism and prediction of forming limit for aluminum alloy incremental forming process, J. Mater. Process. Technol. 282 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116687.

DOI: 10.1016/j.jmatprotec.2020.116687

Google Scholar

[7] J.A. López-Fernández, G. Centeno, A.J. Martínez-Donaire, D. Morales-Palma, C. Vallellano, Stretch-flanging of AA2024-T3 sheet by single-stage SPIF, Thin-Walled Struct. 160 (2021). https://doi.org/10.1016/j.tws.2020.107338.

DOI: 10.1016/j.tws.2020.107338

Google Scholar

[8] P. Eyckens, S. He, A. Van Bael, P. Van Houtte, J. Duflou, Forming limit predictions for the serrated strain paths in single point incremental sheet forming, AIP Conf. Proc. 908 (2007) 141–146. https://doi.org/10.1063/1.2740802.

DOI: 10.1063/1.2740802

Google Scholar

[9] M.J. Mirnia, M. Shamsari, Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion, J. Mater. Process. Technol. 244 (2017) 17–43. https://doi.org/10.1016/j.jmatprotec.2017.01.029.

DOI: 10.1016/j.jmatprotec.2017.01.029

Google Scholar

[10] V. Vujovic, A.H. Shabaik, A new workability criterion for ductile metals, J. Eng. Mater. Technol. Trans. ASME. 108 (1986) 245–249. https://doi.org/10.1115/1.3225876.

DOI: 10.1115/1.3225876

Google Scholar

[11] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci. 46 (2004) 81–98. https://doi.org/10.1016/j.ijmecsci.2004.02.006.

DOI: 10.1016/j.ijmecsci.2004.02.006

Google Scholar

[12] C. Suntaxi, G. Centeno, M.B. Silva, C. Vallellano, P.A.F. Martins, Tube expansion by single point incremental forming: An experimental and numerical investigation, Metals (Basel). 11 (2021) 1–18. https://doi.org/10.3390/met11091481.

DOI: 10.3390/met11091481

Google Scholar

[13] V.A. Cristino, J.P. Magrinho, G. Centeno, M.B. Silva, P.A.F. Martins, Theory of single point incremental forming of tubes, J. Mater. Process. Technol. 287 (2021). https://doi.org/10.1016/j.jmatprotec.2020.116659.

DOI: 10.1016/j.jmatprotec.2020.116659

Google Scholar

[14] M.B. Silva, K. Isik, A.E. Tekkaya, A.G. Atkins, P.A.F. Martins, Fracture toughness and failure limits in sheet metal forming, J. Mater. Process. Technol. 234 (2016). https://doi.org/10.1016/j.jmatprotec.2016.03.029.

DOI: 10.1016/j.jmatprotec.2016.03.029

Google Scholar

[15] F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech. 35 (1968) 363–371.

Google Scholar

[16] A.G. Atkins, Fracture in forming, J. Mater. Process. Technol. 56 (1996) 609–618. https://doi.org/10.1016/0924-0136(95)01875-1.

Google Scholar

[17] A.J. Martínez-Donaire, M. Borrego, D. Morales-Palma, G. Centeno, C. Vallellano, Analysis of the influence of stress triaxiality on formability of hole-flanging by single-stage SPIF, Int. J. Mech. Sci. 151 (2019) 76–84. https://doi.org/10.1016/j.ijmecsci.2018.11.006.

DOI: 10.1016/j.ijmecsci.2018.11.006

Google Scholar