[1]
T. Cao, B. Lu, D. Xu, H. Zhang, J. Chen, H. Long, J. Cao, An efficient method for thickness prediction in multi-pass incremental sheet forming. Int. J. Adv. Manuf. Technol. 77 (2015) 469–483.
DOI: 10.1007/s00170-014-6489-9
Google Scholar
[2]
G. Ingarao, R. Di Lorenzo, F. Micari, Sustainability issues in sheet metal forming processes: An overview. J. Clean. Prod. 19 (2011) 337–347.
DOI: 10.1016/j.jclepro.2010.10.005
Google Scholar
[3]
Q. Zhang, F. Xiao, H. Guo, C. Li, L. Gao, X. Guo, W. Han, A. Bondarev, Warm negative incremental forming of magnesium alloy AZ31 Sheet: New lubricating method. J. Mater. Process. Technol. 210 (2010) 323–329.
DOI: 10.1016/j.jmatprotec.2009.09.018
Google Scholar
[4]
G. Ambrogio, L. Filice, F. Gagliardi, Formability of lightweight alloys by hot incremental sheet forming. Mater. Des. 34 (2012) 501–508.
DOI: 10.1016/j.matdes.2011.08.024
Google Scholar
[5]
W. Bao, X. Chu, S. Lin, J. Gao, Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Mater. Des. 87 (2015) 632–639.
DOI: 10.1016/j.matdes.2015.08.072
Google Scholar
[6]
G. Ambrogio, L. De Napoli, L. Filice, F. Gagliardi, M. Muzzupappa, Application of incremental forming process for high customised medical product manufacturing. J. Mater. Process. Technol. 162 (2005) 156–162.
DOI: 10.1016/j.jmatprotec.2005.02.148
Google Scholar
[7]
L. Galdos, E.S. De Argandoña, I. Ulacia, G. Arruebarrena, Warm incremental forming of magnesium alloys using hot fluid as heating media. Key Engineering Materials, vol. 504-506 (2012) 815-820.
DOI: 10.4028/www.scientific.net/kem.504-506.815
Google Scholar
[8]
L. Fratini, G. Ambrogio, R. Di Lorenzo, L. Filice, F. Micari, Influence of mechanical properties of the sheet material on formability in single point incremental forming, CIRP Annals-Manufacturing Technology 53(1) (2004) 207-210.
DOI: 10.1016/s0007-8506(07)60680-5
Google Scholar
[9]
L. Filice, L. Fratini, F. Micari, Analysis of material formability in incremental forming, CIRP annals-Manufacturing technology 51(1) (2002) 199-202.
DOI: 10.1016/s0007-8506(07)61499-1
Google Scholar
[10]
T.A. Marques, M.B. Silva, P.A.F. Martins, On the potential of single point incremental forming of sheet polymer parts, The International Journal of Advanced Manufacturing Technology 60(1-4) (2012) 75-86.
DOI: 10.1007/s00170-011-3585-y
Google Scholar
[11]
I. Bagudanch, M.L. Garcia-Romeu, M. Sabater, Incremental forming of polymers: process parameters selection from the perspective of electric energy consumption and cost, Journal of Cleaner Production 112 (2016) 1013-1024.
DOI: 10.1016/j.jclepro.2015.08.087
Google Scholar
[12]
G. Centeno, M.B. Silva, V.A.M. Cristino, C. Vallellano, P.A.F. Martins, Hole-flanging by incremental sheet forming. International Journal of Machine Tools and Manufacture 59 (2012) 46- 54.
DOI: 10.1016/j.ijmachtools.2012.03.007
Google Scholar
[13]
R. Conte, G. Ambrogio, D. Pulice, F. Gagliardi, L. Filice, Incremental Sheet forming of a composite made of thermoplastic matrix and glass-fiber reinforcement. Procedia Engineering 207 (2017) 819-824.
DOI: 10.1016/j.proeng.2017.10.835
Google Scholar
[14]
J. Jeswiet, J.R. Duflou, A. Szekeres, Forces in single point and two point incremental forming. Adv. Mater. Res. 6–8 (2005) 449–456.
DOI: 10.4028/www.scientific.net/amr.6-8.449
Google Scholar
[15]
J.R. Duflou, A. Szekeres, P. Vanherck, Force measurements for single point incremental forming: An experimental study. Adv. Mater. Res. 6–8 (2005) 441–448.
DOI: 10.4028/www.scientific.net/amr.6-8.441
Google Scholar
[16]
J. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker, Laser assisted incremental forming: Formability and accuracy improvement. CIRP Ann. Manuf. Technol. 56 (2007) 273–276.
DOI: 10.1016/j.cirp.2007.05.063
Google Scholar
[17]
J. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker, Improved SPIF performance through dynamic local heating. Int. J. Mach. Tools Manuf. 48 (2008) 543–549.
DOI: 10.1016/j.ijmachtools.2007.08.010
Google Scholar
[18]
L. Filice, G. Ambrogio, F. Micari, On-line control of single point incremental forming operations through punch force monitoring. CIRP Ann. Manuf. Technol. 55 (2006) 245–248.
DOI: 10.1016/s0007-8506(07)60408-9
Google Scholar
[19]
G. Centeno, I. Bagudanch, A. Martínez-Donaire, M.L. Garcia-Romeu, C. Vallellano, Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. Mater. Des. 63 (2014) 20–29.
DOI: 10.1016/j.matdes.2014.05.066
Google Scholar
[20]
D. Xu, W. Wu, R. Malhotra, J. Chen, B. Lu, J. Cao, Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int. J. Mach. Tools Manuf. 73 (2013) 37–46.
DOI: 10.1016/j.ijmachtools.2013.06.007
Google Scholar
[21]
G. Palumbo, M. Brandizzi, Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater. Des. 40 (2012) 43–51.
DOI: 10.1016/j.matdes.2012.03.031
Google Scholar
[22]
G. Hussain, L. Gao, N. Hayat, Z. Cui, Y. Pang, N. Dar, Tool and lubrication for negative incremental forming of a commercially pure titanium sheet. J. Mater. Process. Technol. 203 (2008) 193–201.
DOI: 10.1016/j.jmatprotec.2007.10.043
Google Scholar
[23]
N.G. Azevedo, J.S. Farias, R.P. Bastos, P. Teixeira, J.P. Davim, R.J.A. de Sousa, Lubrication aspects during single point incremental forming for steel and aluminum materials. Int. J. Precis. Eng. Manuf. 16 (2015) 589–595.
DOI: 10.1007/s12541-015-0079-0
Google Scholar
[24]
I. Bagudanch, G. Centeno, C. Vallellano, M. Garcia-Romeu, Forming force in single point incremental forming under different bending conditions. Procedia Eng. 63 (2013) 354–360.
DOI: 10.1016/j.proeng.2013.08.207
Google Scholar
[25]
A.D. Brooker, J. Ward, L. Wang, Lightweighting impacts on fuel economy, cost, and component losses. SAE Technical Papers 2 (2013).
DOI: 10.4271/2013-01-0381
Google Scholar
[26]
E. Alonso, T. Lee, C. Bjelkengren, R. Roth, R. Kirchain, Evaluating the Potential for Secondary Mass Savings in Vehicle Lightweighting. Environmental Science & Technology, 46(5) (2012) 2893- 2901.
DOI: 10.1021/es202938m
Google Scholar
[27]
S. To et al., Cars on a Diet : 1 The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U.S. (2010).
Google Scholar
[28]
J.S. Tanco, C.V. Nielsen, A. Chergui, W. Zhang, N. Bay, Weld nugget formation in resistance spot welding of new lightweight sandwich material. Int. J. Adv. Manuf. Technol. 80 (2015) 1137– 1147.
DOI: 10.1007/s00170-015-7108-0
Google Scholar
[29]
S. Amancio-Filho, J. Dos Santos, Joining of polymers and polymer-metal hybrid structures: Recent developments and trends. Polym. Eng. Sci. 49 (2009) 1461–1476.
DOI: 10.1002/pen.21424
Google Scholar
[30]
T.R.M. Contreiras, J.P.M. Pragana, I.M.F. Bragança, C.M.A. Silva, L.M. Alves, P.A.F. Martins, Joining by forming of lightweight sandwich composite panels. Procedia Manuf. 29 (2019) 288–295.
DOI: 10.1016/j.promfg.2019.02.140
Google Scholar
[31]
T.R.M. Contreiras, Joining by Forming of Composite Sandwich Panels. Master's Thesis, Mechanical Engineering, Técnico Lisboa, Portugal, February (2019).
Google Scholar
[32]
Springer Fachmedien Wiesbaden. Application Potential of Litecor in the Body. In ATZextra Worldwide; Springer Fachmedien Wiesbaden: Wiesbaden, Germany (2014) 108–111.
DOI: 10.1007/s40111-014-0479-7
Google Scholar
[33]
R. Haque, Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review. Arch. Civ. Mech. Eng. 18 (2018) 83–93.
DOI: 10.1016/j.acme.2017.06.003
Google Scholar
[34]
ThyssenKrupp Steel Europe AG. Technische Daten für Litecor C, 04 (2015).
Google Scholar
[35]
J. Slota, A. Kubit, T. Trzepieciński, B. Krasowski, J. Varga, Ultimate Load‐Carrying Ability of Rib‐Stiffened 2024‐T3 and 7075‐T6 Aluminium Alloy Panels under Axial Compression. Materials 14, 1176, (2021) 1-19.
DOI: 10.3390/ma14051176
Google Scholar
[36]
B. Krasowski, A. Kubit, T. Trzepieciński, J. Slota, Experimental analysis of single point incremental forming of truncated cones in DC04 steel sheet. Advances in Materials Science, Vol. 20, No. 4(66), December (2020) 5-15.
DOI: 10.2478/adms-2020-0018
Google Scholar
[37]
M. Durante, A. Formisano, A. Langella, F.M.C. Minutolo, The influence of tool rotation on an incremental forming process. J. Mater. Process. Technol. 209 (2009) 4621–4626.
DOI: 10.1016/j.jmatprotec.2008.11.028
Google Scholar
[38]
D. Xu, W. Wu, R. Malhotra, J. Chen, B. Lu, J. Cao, Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int. J. Mach. Tools Manuf. 73 (2013) 37–46.
DOI: 10.1016/j.ijmachtools.2013.06.007
Google Scholar