Analysis of the Possibility of Forming Stiffening Ribs in Litecor Metal-Plastic Composite Using the Single Point Incremental Forming Method

Article Preview

Abstract:

Efforts to reduce COx are extremely important, which forces the use of materials and technologies that reduce the weight of means of transport in order to reduce energy consumption. Currently, aluminum alloys and FRP composites are still too expensive for mass industry applications. Presented in this study, Litecor is a three-layer composite that combines the high strength of steel with the low density of plastic. Thanks to the use of external steel covers 0.3 mm thick and a light core 0.7 mm thick, high stiffness was achieved while maintaining a relatively low weight. The weight reduction in comparison with steel blanks with the same stiffness is up to 40%. Litecor is mainly developed by ThyssenKrupp, it is a promising construction material, but it requires development the technology of forming and joining. In this study, the possibility of forming the Litecor layered composite was investigated using the single-point incremental sheet forming (SPIF) method. As part of the research, the stiffening ribs were shaped, the maximum depth of the embossing was determined. The degree of thinning in selected cross-sections of the embossing was determined. The influence of the rotational speed of the tool and the feed rate on the properties of the shaped surface was also analyzed. Incorrectly selected shaping parameters have been shown to damage the zinc coating on the inner surface of the embossing.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] T. Cao, B. Lu, D. Xu, H. Zhang, J. Chen, H. Long, J. Cao, An efficient method for thickness prediction in multi-pass incremental sheet forming. Int. J. Adv. Manuf. Technol. 77 (2015) 469–483.

DOI: 10.1007/s00170-014-6489-9

Google Scholar

[2] G. Ingarao, R. Di Lorenzo, F. Micari, Sustainability issues in sheet metal forming processes: An overview. J. Clean. Prod. 19 (2011) 337–347.

DOI: 10.1016/j.jclepro.2010.10.005

Google Scholar

[3] Q. Zhang, F. Xiao, H. Guo, C. Li, L. Gao, X. Guo, W. Han, A. Bondarev, Warm negative incremental forming of magnesium alloy AZ31 Sheet: New lubricating method. J. Mater. Process. Technol. 210 (2010) 323–329.

DOI: 10.1016/j.jmatprotec.2009.09.018

Google Scholar

[4] G. Ambrogio, L. Filice, F. Gagliardi, Formability of lightweight alloys by hot incremental sheet forming. Mater. Des. 34 (2012) 501–508.

DOI: 10.1016/j.matdes.2011.08.024

Google Scholar

[5] W. Bao, X. Chu, S. Lin, J. Gao, Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Mater. Des. 87 (2015) 632–639.

DOI: 10.1016/j.matdes.2015.08.072

Google Scholar

[6] G. Ambrogio, L. De Napoli, L. Filice, F. Gagliardi, M. Muzzupappa, Application of incremental forming process for high customised medical product manufacturing. J. Mater. Process. Technol. 162 (2005) 156–162.

DOI: 10.1016/j.jmatprotec.2005.02.148

Google Scholar

[7] L. Galdos, E.S. De Argandoña, I. Ulacia, G. Arruebarrena, Warm incremental forming of magnesium alloys using hot fluid as heating media. Key Engineering Materials, vol. 504-506 (2012) 815-820.

DOI: 10.4028/www.scientific.net/kem.504-506.815

Google Scholar

[8] L. Fratini, G. Ambrogio, R. Di Lorenzo, L. Filice, F. Micari, Influence of mechanical properties of the sheet material on formability in single point incremental forming, CIRP Annals-Manufacturing Technology 53(1) (2004) 207-210.

DOI: 10.1016/s0007-8506(07)60680-5

Google Scholar

[9] L. Filice, L. Fratini, F. Micari, Analysis of material formability in incremental forming, CIRP annals-Manufacturing technology 51(1) (2002) 199-202.

DOI: 10.1016/s0007-8506(07)61499-1

Google Scholar

[10] T.A. Marques, M.B. Silva, P.A.F. Martins, On the potential of single point incremental forming of sheet polymer parts, The International Journal of Advanced Manufacturing Technology 60(1-4) (2012) 75-86.

DOI: 10.1007/s00170-011-3585-y

Google Scholar

[11] I. Bagudanch, M.L. Garcia-Romeu, M. Sabater, Incremental forming of polymers: process parameters selection from the perspective of electric energy consumption and cost, Journal of Cleaner Production 112 (2016) 1013-1024.

DOI: 10.1016/j.jclepro.2015.08.087

Google Scholar

[12] G. Centeno, M.B. Silva, V.A.M. Cristino, C. Vallellano, P.A.F. Martins, Hole-flanging by incremental sheet forming. International Journal of Machine Tools and Manufacture 59 (2012) 46- 54.

DOI: 10.1016/j.ijmachtools.2012.03.007

Google Scholar

[13] R. Conte, G. Ambrogio, D. Pulice, F. Gagliardi, L. Filice, Incremental Sheet forming of a composite made of thermoplastic matrix and glass-fiber reinforcement. Procedia Engineering 207 (2017) 819-824.

DOI: 10.1016/j.proeng.2017.10.835

Google Scholar

[14] J. Jeswiet, J.R. Duflou, A. Szekeres, Forces in single point and two point incremental forming. Adv. Mater. Res. 6–8 (2005) 449–456.

DOI: 10.4028/www.scientific.net/amr.6-8.449

Google Scholar

[15] J.R. Duflou, A. Szekeres, P. Vanherck, Force measurements for single point incremental forming: An experimental study. Adv. Mater. Res. 6–8 (2005) 441–448.

DOI: 10.4028/www.scientific.net/amr.6-8.441

Google Scholar

[16] J. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker, Laser assisted incremental forming: Formability and accuracy improvement. CIRP Ann. Manuf. Technol. 56 (2007) 273–276.

DOI: 10.1016/j.cirp.2007.05.063

Google Scholar

[17] J. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker, Improved SPIF performance through dynamic local heating. Int. J. Mach. Tools Manuf. 48 (2008) 543–549.

DOI: 10.1016/j.ijmachtools.2007.08.010

Google Scholar

[18] L. Filice, G. Ambrogio, F. Micari, On-line control of single point incremental forming operations through punch force monitoring. CIRP Ann. Manuf. Technol. 55 (2006) 245–248.

DOI: 10.1016/s0007-8506(07)60408-9

Google Scholar

[19] G. Centeno, I. Bagudanch, A. Martínez-Donaire, M.L. Garcia-Romeu, C. Vallellano, Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. Mater. Des. 63 (2014) 20–29.

DOI: 10.1016/j.matdes.2014.05.066

Google Scholar

[20] D. Xu, W. Wu, R. Malhotra, J. Chen, B. Lu, J. Cao, Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int. J. Mach. Tools Manuf. 73 (2013) 37–46.

DOI: 10.1016/j.ijmachtools.2013.06.007

Google Scholar

[21] G. Palumbo, M. Brandizzi, Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater. Des. 40 (2012) 43–51.

DOI: 10.1016/j.matdes.2012.03.031

Google Scholar

[22] G. Hussain, L. Gao, N. Hayat, Z. Cui, Y. Pang, N. Dar, Tool and lubrication for negative incremental forming of a commercially pure titanium sheet. J. Mater. Process. Technol. 203 (2008) 193–201.

DOI: 10.1016/j.jmatprotec.2007.10.043

Google Scholar

[23] N.G. Azevedo, J.S. Farias, R.P. Bastos, P. Teixeira, J.P. Davim, R.J.A. de Sousa, Lubrication aspects during single point incremental forming for steel and aluminum materials. Int. J. Precis. Eng. Manuf. 16 (2015) 589–595.

DOI: 10.1007/s12541-015-0079-0

Google Scholar

[24] I. Bagudanch, G. Centeno, C. Vallellano, M. Garcia-Romeu, Forming force in single point incremental forming under different bending conditions. Procedia Eng. 63 (2013) 354–360.

DOI: 10.1016/j.proeng.2013.08.207

Google Scholar

[25] A.D. Brooker, J. Ward, L. Wang, Lightweighting impacts on fuel economy, cost, and component losses. SAE Technical Papers 2 (2013).

DOI: 10.4271/2013-01-0381

Google Scholar

[26] E. Alonso, T. Lee, C. Bjelkengren, R. Roth, R. Kirchain, Evaluating the Potential for Secondary Mass Savings in Vehicle Lightweighting. Environmental Science & Technology, 46(5) (2012) 2893- 2901.

DOI: 10.1021/es202938m

Google Scholar

[27] S. To et al., Cars on a Diet : 1 The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U.S. (2010).

Google Scholar

[28] J.S. Tanco, C.V. Nielsen, A. Chergui, W. Zhang, N. Bay, Weld nugget formation in resistance spot welding of new lightweight sandwich material. Int. J. Adv. Manuf. Technol. 80 (2015) 1137– 1147.

DOI: 10.1007/s00170-015-7108-0

Google Scholar

[29] S. Amancio-Filho, J. Dos Santos, Joining of polymers and polymer-metal hybrid structures: Recent developments and trends. Polym. Eng. Sci. 49 (2009) 1461–1476.

DOI: 10.1002/pen.21424

Google Scholar

[30] T.R.M. Contreiras, J.P.M. Pragana, I.M.F. Bragança, C.M.A. Silva, L.M. Alves, P.A.F. Martins, Joining by forming of lightweight sandwich composite panels. Procedia Manuf. 29 (2019) 288–295.

DOI: 10.1016/j.promfg.2019.02.140

Google Scholar

[31] T.R.M. Contreiras, Joining by Forming of Composite Sandwich Panels. Master's Thesis, Mechanical Engineering, Técnico Lisboa, Portugal, February (2019).

Google Scholar

[32] Springer Fachmedien Wiesbaden. Application Potential of Litecor in the Body. In ATZextra Worldwide; Springer Fachmedien Wiesbaden: Wiesbaden, Germany (2014) 108–111.

DOI: 10.1007/s40111-014-0479-7

Google Scholar

[33] R. Haque, Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review. Arch. Civ. Mech. Eng. 18 (2018) 83–93.

DOI: 10.1016/j.acme.2017.06.003

Google Scholar

[34] ThyssenKrupp Steel Europe AG. Technische Daten für Litecor C, 04 (2015).

Google Scholar

[35] J. Slota, A. Kubit, T. Trzepieciński, B. Krasowski, J. Varga, Ultimate Load‐Carrying Ability of Rib‐Stiffened 2024‐T3 and 7075‐T6 Aluminium Alloy Panels under Axial Compression. Materials 14, 1176, (2021) 1-19.

DOI: 10.3390/ma14051176

Google Scholar

[36] B. Krasowski, A. Kubit, T. Trzepieciński, J. Slota, Experimental analysis of single point incremental forming of truncated cones in DC04 steel sheet. Advances in Materials Science, Vol. 20, No. 4(66), December (2020) 5-15.

DOI: 10.2478/adms-2020-0018

Google Scholar

[37] M. Durante, A. Formisano, A. Langella, F.M.C. Minutolo, The influence of tool rotation on an incremental forming process. J. Mater. Process. Technol. 209 (2009) 4621–4626.

DOI: 10.1016/j.jmatprotec.2008.11.028

Google Scholar

[38] D. Xu, W. Wu, R. Malhotra, J. Chen, B. Lu, J. Cao, Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int. J. Mach. Tools Manuf. 73 (2013) 37–46.

DOI: 10.1016/j.ijmachtools.2013.06.007

Google Scholar