Identification of Influencing Factors in Machine Hammer Peening with Consideration of Lubricant Influences

Article Preview

Abstract:

Lightweight construction and performance requirements in the automotive industry have resulted in increased power density. At the same time, this increases the load on the workpieces. To counteract the resulting wear, either a more wear-resistant material may be applied or the functional surface may be specifically modified against wear. Machine hammer peening (MHP) is a process for such a targeted adjustment of the functional surface and the surface area properties. MHP is a mechanical surface treatment, which increases the wear resistance of the workpieces by introducing residual compressive stresses and work hardening as well as by smoothing or structuring the surface. To ensure an accurate adjustment of the surface properties, the influencing factors (material, process parameters and lubricant) and their interactions must be sufficiently well studied and understood. In particular, the influence of the lubricant on the surface area properties has not yet been adequately investigated. The objective of the work presented in this paper was to provide a deeper insight into the influence of the type of lubricant on the resulting surface properties in terms of roughness, residual stresses and hardness. The lubricant’s influence was investigated using a partial factorial experimental design. Additional factors investigated, besides the choice of lubricant, were stroke, distance of indentation and step over distance. The results show a strong influence of the lubricant selection, especially on the resulting surface roughness. For the same process parameters, a deviation of 540 % in the resulting surface roughness was measured between two surfaces machined with different lubricants.

You have full access to the following eBook

Info:

Periodical:

Pages:

834-842

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] Federal Ministry of Justice and Consumer Protection, Federal Climate Change Act: Federal Climate Change Act of 12 December 2019 (Federal Law Gazette I, p.2513), as last amended by Article 1 of the Act of 18 August 2021 (Federal Law Gazette I, p.3905). [Online]. Available: https://​www.gesetze-im-internet.de​/​englisch_​ksg/​englisch_​ksg.html (accessed: Nov. 16 2021).

DOI: 10.1163/9789004322714_cclc_2018-0074-003

Google Scholar

[2] Y. Zhang, X. Lai, P. Zhu, and W. Wang, Lightweight design of automobile component using high strength steel based on dent resistance,, Materials & Design, vol. 27, no. 1, p.64–68, 2006,.

DOI: 10.1016/j.matdes.2004.09.010

Google Scholar

[3] N. Attarzadeh, M. Molaei, K. Babaei, and A. Fattah-alhosseini, New Promising Ceramic Coatings for Corrosion and Wear Protection of Steels: A Review,, Surfaces and Interfaces, vol. 23, p.100997, 2021,.

DOI: 10.1016/j.surfin.2021.100997

Google Scholar

[4] P. Delgado, I. I. Cuesta, J. M. Alegre, and A. Díaz, State of the art of Deep Rolling,, Precision Engineering, vol. 46, p.1–10, (2016).

DOI: 10.1016/j.precisioneng.2016.05.001

Google Scholar

[5] J. Wied, J. Scheil, M. Klamser, and C. Berger, Impact experiments and finite element simulation of surface roughness reduction by machine hammer peening,, Mat.-wiss. u. Werkstofftech., vol. 42, no. 9, p.827–832, 2011,.

DOI: 10.1002/mawe.201100768

Google Scholar

[6] J. Scheil, C. Müller, M. Steitz, and P. Groche, Influence of Process Parameters on Surface Hardening in Hammer Peening and Deep Rolling,, KEM, 554-557, p.1819–1827, 2013,.

DOI: 10.4028/www.scientific.net/kem.554-557.1819

Google Scholar

[7] S. Pfeiffer, M. Fiedler, T. Bergelt, M. Kolouch, M. Putz, and M. F.-X. Wagner, On the correlation of hammer-peened surfaces and process, material and geometry parameters,, IOP Conf. Ser.: Mater. Sci. Eng., vol. 480, p.12021, 2019,.

DOI: 10.1088/1757-899x/480/1/012021

Google Scholar

[8] M. Steitz, P. Stein, and P. Groche, Influence of Hammer-Peened Surface Textures on Friction Behavior,, Tribol Lett, vol. 58, no. 2, p.404, 2015,.

DOI: 10.1007/s11249-015-0502-9

Google Scholar

[9] J.-L. Curtat, J. Lanteigne, H. Champliaud, Z. Liu, and J.-B. Lévesque, Influence of hammer peening on fatigue life of E309L steel used for 13%Cr-4%Ni blade runner repairs,, International Journal of Fatigue, vol. 100, p.68–77, 2017,.

DOI: 10.1016/j.ijfatigue.2017.03.007

Google Scholar

[10] C. Lechner, F. Bleicher, C. Habersohn, C. Bauer, and S. Goessinger, The Use of Machine Hammer Peening Technology for Smoothening and Structuring of Surfaces,, ANN DAAAM 2012, P23, p.331, (2012).

DOI: 10.2507/23rd.daaam.proceedings.077

Google Scholar

[11] P. Groche, M. Steitz, C. Müller, and J. Scheil, Einglättung durch Festwalzen und Festklopfen: Handlungsrichtlinien für den effizienten Werkzeugbau,, wt Werkstattstechnik online, vol. 102, p.665, (2012).

DOI: 10.37544/1436-4980-2012-10-665

Google Scholar

[12] R. Mannens, D. Trauth, P. Mattfeld, and F. Klocke, Influence of Impact Force, Impact Angle, and Stroke Length in Machine Hammer Peening on the Surface Integrity of the Stainless Steel X3CrNiMo13-4,, Procedia CIRP, vol. 71, p.166–171, 2018,.

DOI: 10.1016/j.procir.2018.05.091

Google Scholar

[13] Krüss GmbH, Owens, Wendt, Rabel and Kaelble (OWRK) method. [Online]. Available: https://​www.kruss-scientific.com​/​en/​know-​how/​glossary/​owens-​wendt-​rabel-​and-​kaelble-​owrk-​method (accessed: Nov. 16 2021).

Google Scholar

[14] C. Lechner, Oberflächenmodifikation unter Einsatz der Technologie des Schlagverdichtens (Machine Hammer Peenings),, Dissertation, TU Wien, Wien, (2014).

Google Scholar

[15] L. Baillet, E. Vidal-Sallé, and J. C. Boyer, A friction model for mixed lubrication regime coupled to a prediction of a local thermal contact resistance for axisymmetric configurations,, in Tribology Series, Transient Processes in Tribology, Proceedings of the 30th Leeds-Lyon Symposium on Tribology: Elsevier, 2003, p.339–348.

DOI: 10.1016/s0167-8922(03)80061-5

Google Scholar

[16] F. Hauer, Die elasto-plastische Einglättung rauer Oberflächen und ihr Einfluss auf die Reibung in der Umformtechnik,, Dissertation, Friedrich-Alexander-Universität, Erlangen-Nürnberg, (2014).

Google Scholar