Influence of Macro-Structured Tools on the Formability of Aluminum Alloys in the Cryogenic Temperature Range

Article Preview

Abstract:

Aluminum materials are popular materials for research in terms of lightweight construction. How cryogenic forming can be used to increase material utilization in terms of resource efficiency is one of the areas being investigated. Subject of this study are numerical and experimental investigations regarding the formability of the aluminum alloy AA6014-T4 with macro-structured deep drawing tools at cryogenic temperatures. The macro-structure of the deep drawing dies significantly reduces the heat flux between the dies and the blank due to the reduced contact area. For this reason, active cooling or heating of the dies is not required. The process of heat conduction between the tool and the blank, as well as the deep drawing process, is calculated using the FE-method and compared with the experimental investigations. In addition, the induced residual stresses are determined using the hole-drilling method and compared with the computational solution. The presented examination shows an improved deep drawing ratio of the aluminum alloy AA6014-T4 at cryogenic blank temperature without active tool cooling. Additionally, the influence of the blank temperature on the forming regarding the residual stresses in the cups is analyzed and discussed.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] F. Grabner, J. A. Österreicher, B. Gruber, N. Papenberg, F. Gerstner, S. Kirnstötter and C. M. Schlögl: Cryogenic Forming of Al‐Mg Alloy Sheet for Car Outer Body Applications. In: Advanced Engineering Materials 21,.

DOI: 10.1002/adem.201900089

Google Scholar

[2] C. Wang, Y. Yi, S. Huang, F. Dong, H. He, K. Huang, Y. Jia: Experimental and Theoretical Investigation on the Forming Limit of 2024‑O Aluminum Alloy Sheet at Cryogenic Temperatures. In: Metals and Materials International, doi.org/10.1007/s12540-020-00922-3, (2021).

DOI: 10.1007/s12540-020-00922-3

Google Scholar

[3] S. Yuan, W. Cheng, W. Liu and Y. Xu: A novel deep drawing process for aluminum alloy sheets at cryogenic temperatures. In: Journal of Materials Processing Technology 284, doi.org/10.1016/j.jmatprotec.2020.116743, (2020).

DOI: 10.1016/j.jmatprotec.2020.116743

Google Scholar

[4] A. Mousavi and A. Brosius: Improving the springback behavior of deep drawn parts by macro-structured tools, IOP Conference Series: Materials Science and Engineering 418, (2018).

DOI: 10.1088/1757-899x/418/1/012105

Google Scholar

[5] A. Brosius, A. Mousavi: Lubricant free deep drawing process by macro-structured tools, CIRP Annals – Manufacturing Technology 65, pp.253-256, (2016).

DOI: 10.1016/j.cirp.2016.04.060

Google Scholar

[6] . A. Mousavi: A novel approach towards a lubricant-free deep drawing process via macro-structured tools. Technische Universität Dresden. Dissertation, (2019).

Google Scholar

[7] Y. Koshino, Y. Aruga, J. Mukai and K. Kaneko: Relationship among Elongation, Work Hardening Behavior and Dislocation Characteristics of Al–Mg–Si Series Alloys. In: MATERIALS TRANSACTIONS 60, Nr. 1, pp.68-73. 10.2320/matertrans.L-M2018845, (2019).

DOI: 10.2320/matertrans.l-m2018845

Google Scholar

[8] N. Sotirov, G. Falkinger, F. Grabner, G. Schmid, R. Schneider, R. J. Grant, R. Kelsch, K. Radlmayr, M. Scheerer, C. Reichl, H. Sehrschön and M. Loipetsberger: Improved Formability of AA5182 Aluminium Alloy Sheet at Cryogenic Temperatures. In: Materials Today: Proceedings 2, Nr. 3, S113-S118. 10.1016/j.matpr.2015.05.027, (2015).

DOI: 10.1016/j.matpr.2015.05.027

Google Scholar

[9] M. Kumar, N. Sotirov, F. Grabner, R. Schneider and G. Mozdzen: Cryogenic forming behaviour of AW-6016-T4 sheet. In: Transactions of Nonferrous Metals Society of China 27, Nr. 6, pp.1257-1263.

DOI: 10.1016/s1003-6326(17)60146-8

Google Scholar

[10] M. Tulke, A. Wolf and A. Brosius: Cryogenic deep drawing of aluminum alloy AA6014 using macro-structured tools, IOP Conference Series: Materials Science and Engineering 1157,.

DOI: 10.1088/1757-899x/1157/1/012053

Google Scholar

[11] E. Siebel and W. Mühlhäuser: Eigenspannungen beim Tiefziehen. In: Mitteilungen der Forschungsgesellschaft Blechverarbeitung 21, p.241‐244, (1954).

Google Scholar

[12] E. Ponslet, M. Steinzig: Residual stress measurement using the hole drilling method and laser speckle interferometry. In: Experimental Techniques ,Vol. 27, Nr. 4, pp.17-21,.

DOI: 10.1111/j.1747-1567.2003.tb00117.x

Google Scholar

[13] EN ISO 6892-1:2019: Metallic materials - tensile testing. Part 1, Method of test at room temperature, (2019).

Google Scholar

[14] R. Schneider, R. J. Grant, N. Sotirov, G. Falkinger, F. Grabner, C. Reichl, M. Scheerer, B. Heine and Z. Zouaoui: Constitutive flow curve approximation of commercial aluminium alloys at low temperatures. In: Materials & Design 88, Nr. 4, p.659–666.

DOI: 10.1016/j.matdes.2015.09.034

Google Scholar