[1]
F. Grabner, J. A. Österreicher, B. Gruber, N. Papenberg, F. Gerstner, S. Kirnstötter and C. M. Schlögl: Cryogenic Forming of Al‐Mg Alloy Sheet for Car Outer Body Applications. In: Advanced Engineering Materials 21,.
DOI: 10.1002/adem.201900089
Google Scholar
[2]
C. Wang, Y. Yi, S. Huang, F. Dong, H. He, K. Huang, Y. Jia: Experimental and Theoretical Investigation on the Forming Limit of 2024‑O Aluminum Alloy Sheet at Cryogenic Temperatures. In: Metals and Materials International, doi.org/10.1007/s12540-020-00922-3, (2021).
DOI: 10.1007/s12540-020-00922-3
Google Scholar
[3]
S. Yuan, W. Cheng, W. Liu and Y. Xu: A novel deep drawing process for aluminum alloy sheets at cryogenic temperatures. In: Journal of Materials Processing Technology 284, doi.org/10.1016/j.jmatprotec.2020.116743, (2020).
DOI: 10.1016/j.jmatprotec.2020.116743
Google Scholar
[4]
A. Mousavi and A. Brosius: Improving the springback behavior of deep drawn parts by macro-structured tools, IOP Conference Series: Materials Science and Engineering 418, (2018).
DOI: 10.1088/1757-899x/418/1/012105
Google Scholar
[5]
A. Brosius, A. Mousavi: Lubricant free deep drawing process by macro-structured tools, CIRP Annals – Manufacturing Technology 65, pp.253-256, (2016).
DOI: 10.1016/j.cirp.2016.04.060
Google Scholar
[6]
. A. Mousavi: A novel approach towards a lubricant-free deep drawing process via macro-structured tools. Technische Universität Dresden. Dissertation, (2019).
Google Scholar
[7]
Y. Koshino, Y. Aruga, J. Mukai and K. Kaneko: Relationship among Elongation, Work Hardening Behavior and Dislocation Characteristics of Al–Mg–Si Series Alloys. In: MATERIALS TRANSACTIONS 60, Nr. 1, pp.68-73. 10.2320/matertrans.L-M2018845, (2019).
DOI: 10.2320/matertrans.l-m2018845
Google Scholar
[8]
N. Sotirov, G. Falkinger, F. Grabner, G. Schmid, R. Schneider, R. J. Grant, R. Kelsch, K. Radlmayr, M. Scheerer, C. Reichl, H. Sehrschön and M. Loipetsberger: Improved Formability of AA5182 Aluminium Alloy Sheet at Cryogenic Temperatures. In: Materials Today: Proceedings 2, Nr. 3, S113-S118. 10.1016/j.matpr.2015.05.027, (2015).
DOI: 10.1016/j.matpr.2015.05.027
Google Scholar
[9]
M. Kumar, N. Sotirov, F. Grabner, R. Schneider and G. Mozdzen: Cryogenic forming behaviour of AW-6016-T4 sheet. In: Transactions of Nonferrous Metals Society of China 27, Nr. 6, pp.1257-1263.
DOI: 10.1016/s1003-6326(17)60146-8
Google Scholar
[10]
M. Tulke, A. Wolf and A. Brosius: Cryogenic deep drawing of aluminum alloy AA6014 using macro-structured tools, IOP Conference Series: Materials Science and Engineering 1157,.
DOI: 10.1088/1757-899x/1157/1/012053
Google Scholar
[11]
E. Siebel and W. Mühlhäuser: Eigenspannungen beim Tiefziehen. In: Mitteilungen der Forschungsgesellschaft Blechverarbeitung 21, p.241‐244, (1954).
Google Scholar
[12]
E. Ponslet, M. Steinzig: Residual stress measurement using the hole drilling method and laser speckle interferometry. In: Experimental Techniques ,Vol. 27, Nr. 4, pp.17-21,.
DOI: 10.1111/j.1747-1567.2003.tb00117.x
Google Scholar
[13]
EN ISO 6892-1:2019: Metallic materials - tensile testing. Part 1, Method of test at room temperature, (2019).
Google Scholar
[14]
R. Schneider, R. J. Grant, N. Sotirov, G. Falkinger, F. Grabner, C. Reichl, M. Scheerer, B. Heine and Z. Zouaoui: Constitutive flow curve approximation of commercial aluminium alloys at low temperatures. In: Materials & Design 88, Nr. 4, p.659–666.
DOI: 10.1016/j.matdes.2015.09.034
Google Scholar