Enhanced Device Performance with Vertical SiC Gate-All-Around Nanowire Power MOSFETs

Article Preview

Abstract:

SiC gate-all-around (GAA) nanowire (NW) MOSFET is one of the most promising device architectures for the next generation of SiC power MOSFETs. This work reveals the great application potential of vertical SiC GAA NW power MOSFETs via TCAD simulation. The investigated devices show higher channel electron mobility (µch) and larger channel carrier density (nch) compared to the conventional SiC power MOSFET. Scaling down of NW diameter (DNW) is beneficial in terms of both, lowering channel resistance (Rch) via improving nch and, increasing breakdown voltage (Vb) by modifying electric field distribution. Low specific-on resistance (Ron,sp) of about 0.68 mΩ∙cm2 for 1 kV SiC MOSFET is shown as possible. However, scaling down the DNW below 100 nm causes an undesirable increase in Ron,sp due to the unscalable device area which is limited by the vertical gate wrapping stacks. The study on device scaling where the NW diameter (DNW) varies from 500 nm to 25 nm provides valuable design considerations for the device's performance. Finally, a top-down process has been developed for the device fabrication. Vertical SiC NWs with an aspect ratio of 10 are formed by an optimized micro-trench free dry etching process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

May 2023

Export:

Share:

Citation:

* - Corresponding Author

[1] L. S. Ramsdell, Studies on silicon carbide, Journal of Earth and Planetary Materials, vol. 32, pp.64-82, 1947.

Google Scholar

[2] J. N. Shenoy, G. L. Chindalore, M. R. Melloch, J. A. Cooper, J. W. Palmour, and K. G. Irvine, Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface, Journal of electronic materials, vol. 24, pp.303-309, 1995.

DOI: 10.1007/bf02659691

Google Scholar

[3] A. Siddiqui, E. Hazem, and S. Shakti, The current status and the future prospects of surface passivation in 4H-SiC transistors, IEEE Transactions on Device and Materials Reliability, vol. 16, no. 3, pp.419-428, 2016.

DOI: 10.1109/tdmr.2016.2587160

Google Scholar

[4] G.Y. Chung, C.C. Tin, J.H. Won, J.R. Williams, K. McDonald, R.A. Weller, S.T. Pantelides, L.C. Feldman, Interface state densities near the conduction band edge in n-type 4H-and 6H-SiC, 2000 IEEE Aerospace Conference, vol. 5, 2000.

DOI: 10.1109/aero.2000.878515

Google Scholar

[5] G. Gudjonsson, H.O. Olafsson, F. Allerstam, P. A. Nilsson, E.O. Sveinbjornsson, H. Zirath, T. Rodle; R. Jos, High field-effect mobility in n-channel Si face 4H-SiC MOSFETs with gate oxide grown on aluminum ion-implanted material, IEEE Electron Device Lett., vol. 26, no. 5, pp.96-98, Feb. 2005.

DOI: 10.1109/led.2004.841191

Google Scholar

[6] A. Modic, G. Liu, A. C. Ahyi, Y. Zhou, P. Xu, M. C. Hamilton, J. R. Williams, L. C. Feldman, S. Dhar, High Channel Mobility 4H-SiC MOSFETs by Antimony Counter-Doping, IEEE Electron Device Lett., vol. 35, no. 9, pp.894-896, Sept. 2014.

DOI: 10.1109/led.2014.2336592

Google Scholar

[7] D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa, H. Yano, Improved Channel Mobility in 4H-SiC MOSFETs by Boron Passivation, IEEE Electron Device Lett., vol. 35, no. 12, pp.1176-1178, Oct. 2014.

DOI: 10.1109/led.2014.2362768

Google Scholar

[8] H. Lee, L. E. Yu, S. W. Ryu, et al, Sub-5nm all-around gate FinFET for ultimate scaling, 2006 Symposium on VLSI Technology, June 2006.

DOI: 10.1109/vlsit.2006.1705215

Google Scholar

[9] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, Nanowire transistors without junctions, Nature nanotechnology, vol. 5, no. 3, pp.225-229, Feb. 2010.

DOI: 10.1038/nnano.2010.15

Google Scholar

[10] F. Udrea, K. Naydenov, H. Kang, T. Kato, E. Kagoshima, T. Nishiwaki, H. Fujiwara, and T. Kimoto, The FinFET effect in Silicon Carbide MOSFETs, IEEE 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Jun. 2021.

DOI: 10.23919/ispsd50666.2021.9452282

Google Scholar

[11] K. Naydenov, N. Donato, and F. Udrea, Operation and performance of the 4H-SiC junctionless FinFET, Eng. Res. Express, vol. 3, 035008, 2021.

DOI: 10.1088/2631-8695/ac12bc

Google Scholar

[12] Rahul P. Ramamurthy, N. Islam, M. Sampath, Dallas T. Morisette, and James A. Cooper, The tri-gate MOSFET: a new vertical power transistor in 4H-SiC, IEEE Electron Device Lett., vol. 42, issue 1, pp.90-93, 2020.

DOI: 10.1109/led.2020.3040239

Google Scholar

[13] B. J. Baliga, SiC power devices: From conception to social impact, 2016 46th European Solid-State Device Research Conference (ESSDERC), issue 2378-6558, Sept. 2016.

DOI: 10.1109/essderc.2016.7599619

Google Scholar