Experimental Investigation of the Pyrolysis of Synthetic Materials Exposed to External and Internal Fires

Article Preview

Abstract:

Consideration was given to the issue of flammability during the thermal decomposition of synthetic materials used for the constructions to isolate the process equipment and building structures. The experimental research data obtained for the thermal decomposition of synthetic materials with the measurements of temperature as a function of the time of thermal radiation were given including a change in the mass and structure of the specimens of synthetic materials exposed to the thermal radiation during the fire. The obtained experimental data enabled the substantiation of the process of the thermal decomposition of synthetic materials depending on time and temperature and also a change in the mass of the specimens of synthetic materials before and after the tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-103

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Sytnik et al., Determination of the influence of natural antioxidant concentrations on the shelf life of sunflower oil, Eastern-European Journal of Enterprise Technologies, 4/11 (106) (2020) 55–82.

DOI: 10.15587/1729-4061.2020.209000

Google Scholar

[2] V. Andronov et al., Efficiency of utilization of vibration-absorbing polimer coating for reducing local vibration, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6 (2014) 85–91.

Google Scholar

[3] V. Slyusar et al., Improvement of the model of object recognition in aero photographs using deep convolutional neural networks, Eastern-European Journal of Enterprise Technologies, 5/2 (113) (2021) 6–21.

DOI: 10.15587/1729-4061.2021.243094

Google Scholar

[4] S. Vambol et al., Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere, Eastern-European Journal of Enterprise Technologies, 6/10 (90) (2017) 57–64.

DOI: 10.15587/1729-4061.2017.118213

Google Scholar

[5] O. Vambol, A. Kondratiev, S. Purhina, М. Shevtsova, Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters, Eastern-European Journal of Enterprise Technologies, 2/1 (110) (2021) 70–80.

DOI: 10.15587/1729-4061.2021.227075

Google Scholar

[6] A.V. Kondratiev, V.E. Gaidachuk, Mathematical analysis of technological parameters for producing superfine prepregs by flattening carbon fibers, Mechanics of Composite Materials. 57, 1 (2021) 91–100.

DOI: 10.1007/s11029-021-09936-3

Google Scholar

[7] L. Chernyak, N. Merezhko, T. Karavayev, Ecological safety of polymeric materials on the base of polystyrene, Commodities and markets, 9/1 (2010) 189–193.

Google Scholar

[8] Demidov, P. G., Shandyba, V. A., Shcheglov, P. P. Combustion and properties of combustible substances, (1981) 272.

Google Scholar

[9] Kerber S. et al. Impact of ventilation on fire behavior in legacy and contemporary residential construction. – Underwriters Laboratories, Incorporated, 2010.

Google Scholar

[10] Ventyljatory i ventyljacija u pozhezhnij ohoroni / Shymon Kokot-Ѓura; Pereklad z pol. Volodymyra Dubasjuka (shvaleno dlja vykorystannja u systemi sluzhbovoi' pidgotovky rishennjam aparatnoi' narady GU DSNS Ukrai'ny u L'vivs'kij oblasti vid 11.08.2020) № 17. – L'viv: «SUPRON1», 2020 – 72 s.

Google Scholar

[11] B. Pospelov et al., Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants, Eastern-European Journal of Enterprise, 4/10 (106) (2020) 37–44.

DOI: 10.15587/1729-4061.2020.210059

Google Scholar

[12] S. Ragimov et al., Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation, Journal of Achievements of Materials and Manufacturing Engineering, 1(91) (2018) 27– 33.

DOI: 10.5604/01.3001.0012.9654

Google Scholar

[13] B. Pospelov et al., Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises, Eastern-European Journal of Enterprise Technologies, 2/10 (116) (2022) 57–65.

DOI: 10.15587/1729-4061.2022.254500

Google Scholar

[14] B. Pospelov et al., Development of the method of operational forecasting of fire in the premises of objects under real conditions, Eastern-European Journal of Enterprise, 2/10 (110) (2021) 43–50.

DOI: 10.15587/1729-4061.2021.226692

Google Scholar

[15] B. Pospelov et al., Short-term fire forecast based on air state gain recurrency and zero-order Brown model, Eastern-European Journal of Enterprise Technologies, 3/10 (111) (2021) 27–33.

DOI: 10.15587/1729-4061.2021.233606

Google Scholar

[16] V. Sadkovyi et al., Development of a method for assessing the reliability of fire detection in premises, Eastern-European Journal of Enterprise Technologies, 3/10 (117) (2022) 56–62.

DOI: 10.15587/1729-4061.2022.259493

Google Scholar

[17] S. Vambol et al., Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle, Eastern-European Journal of Enterprise Technologies, 1/10 (85) (2017) 27– 36.

DOI: 10.15587/1729-4061.2017.85847

Google Scholar

[18] O. Rybalova et al., Development of methods for estimating the environmental risk of degradation of the surface water state, Eastern-European Journal of Enterprise Technologies, 2/10 (92) (2018) 4–17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[19] V. Sadkovyi et al., Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations, Eastern-European Journal of Enterprise Technologies, 6/10 (108) (2020) 14–22.

DOI: 10.15587/1729-4061.2020.218714

Google Scholar

[20] B. Pospelov et al., Use of uncertainty function for identification of hazardous states of atmospheric pollution vector, Eastern-European Journal of Enterprise Technologies, 2/10 (104) (2020) 6–12.

DOI: 10.15587/1729-4061.2020.200140

Google Scholar

[21] D. Dubinin et al., Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge, Eastern-European Journal of Enterprise Technologies, 6/10 (90) (2017) 11– 16.

DOI: 10.15587/1729-4061.2017.114504

Google Scholar

[22] Y. Danchenko et al., Research into surface properties of disperse fillers based on plant raw materials, Eastern-European Journal of Enterprise Technologies, 5/12 (89) (2017) 20–26.

DOI: 10.15587/1729-4061.2017.111350

Google Scholar

[23] NFPA 921. Guide for Fire and Explosion Investigations. Massachusetts, 2017 [USA].

Google Scholar

[24] D. Dubinin et al., Experimental Investigations of the Thermal Decomposition of Wood at the Time of the Fire in the Premises of Domestic Buildings, Materials Science Forum, 1066 (2022) 191–198.

DOI: 10.4028/p-8258ob

Google Scholar

[25] B. Pospelov et al., Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures, Eastern-European Journal of Enterprise, 1/10 (97) (2019) 29–35.

DOI: 10.15587/1729-4061.2019.155027

Google Scholar

[26] V. Vambol et al., Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production, Journal of Achievements in Materials and Manufacturing Engineering, 87(2) (2018) 77–84.

DOI: 10.5604/01.3001.0012.2830

Google Scholar

[27] D. Dubinin et al., Research and justification of the time for conducting operational actions by fire and rescue units to rescue people in a fire | Istraživanje i opravdanje vremena izvođenja operativnih akcija vatrogasno-spasilačkih postrojbi za spašavanje ljudi u požaru, Sigurnost, 64 (1) (2022) 35– 46.

DOI: 10.31306/s.64.1.5

Google Scholar

[28] D. Dubinin et al., Investigation of the effect of carbon monoxide on people in case of fire in a building | Ispitivanje djelovanja ugljičnog monoksida na ljude u slučaju požara u zgradi, Sigurnost, 62 (4) (2020) 347– 357.

DOI: 10.31306/s.62.4.2

Google Scholar

[29] Y. Danchenko et al., Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides, Eastern-European Journal of Enterprise Technologies, 6/12 (90) (2017) 4–12.

DOI: 10.15587/1729-4061.2017.118565

Google Scholar

[30] Y. Danchenko et al., Study of the free surface energy of epoxy composites using an automated measurement system, Eastern-European Journal of Enterprise Technologies, 1/12 (91) (2018) 9–17.

DOI: 10.15587/1729-4061.2018.120998

Google Scholar

[31] O.Z. Dveirin, O.V. Andreev, A.V. Kondrat'ev, V.Ye. Haidachuk, Stressed state in the vicinity of a hole in mechanical joint of composite parts, International Applied Mechanics. 57, 2 (2021) 234–247.

DOI: 10.1007/s10778-021-01076-4

Google Scholar

[32] K. Afanasenko et al., Epoxidized Dinaphthol Application as the Basis for Binder with Advanced Carbonation Level to Reducing its Flammability, Materials Science Forum, 1006 (2020) 41–46.

DOI: 10.4028/www.scientific.net/msf.1006.41

Google Scholar

[33] A. Y. Snegirev et al., A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests, Fire Safety Journal, 59 (2013) 132–150.

DOI: 10.1016/j.firesaf.2013.03.012

Google Scholar

[34] T. B. Y. Chen et al., A multiphase approach for pyrolysis modelling of polymeric materials, Experimental and Computational Multiphase Flow, 5 (2023) 199–211.

DOI: 10.1007/s42757-021-0122-3

Google Scholar

[35] J. Gong et al., Pyrolysis mechanism and combustion behaviors of high impact polystyrene improved by modified ammonium polyphosphate and graphene, Journal of Thermal Analysis and Calorimetry, 147 (2022) 12815–12828.

DOI: 10.1007/s10973-022-11484-4

Google Scholar

[36] B. Camino, G. Camino, The chemical kinetics of the polymer combustion allows for inherent fire retardant synergism, Polymer Degradation and Stability, 160 (2019) 142–147.

DOI: 10.1016/j.polymdegradstab.2018.12.018

Google Scholar

[37] DSTU EN 14313:2019 Vyroby teploizoljacijni dlja budivel'nogo obladnannja ta promyslovyh ustanovok. Promyslovi vyroby z pinopolietylenu (PEF). Tehnichni umovy (EN 14313:2009 + A1:2013, IDT). Kyiv, 2019 [in Ukrainian].

Google Scholar

[38] DSTU B EN 13163:2012 Materialy budivel'ni teploizoljacijni. Vyroby zi spinenogo polistyrolu (EPS). Tehnichni umovy (EN 13163:2008, IDT). Kyiv, 2012 [in Ukrainian].

Google Scholar

[39] DSTU EN 13164:2019 Materialy budivel'ni teploizoljacijni. Vyroby z ekstrudovanogo pinopolistyrolu (XPS). Tehnichni umovy (EN 13164:2012 + A1:2015, IDT) Kyiv, 2019 [in Ukrainian].

Google Scholar

[40] K. V. Korytchenko et al., Enhancing the Fire Resistance of Concrete Structures by Applying Fire-Retardant Temperature-Resistant Metal Coatings, Materials Science Forum, 1038 (2021) 500-505.

DOI: 10.4028/www.scientific.net/msf.1038.500

Google Scholar

[41] K. V. Korytchenko et al., Advanced detonation gun application for aluminum oxide coating, Multidisciplinary journal «Functional Materials», 27 (1) (2020) 224-229.

Google Scholar

[42] A. Kovalov et al., Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence, Materials Science Forum, 1006 (2020) 179–184.

DOI: 10.4028/www.scientific.net/msf.1006.179

Google Scholar

[43] V. Sadkovyi et al., Fire resistance of reinforced concrete and steel structures, Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, (2021) 180.

Google Scholar

[44] Y. Otrosh et al., Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities, E3S Web of Conferences, 123(3):01012 (2019).

DOI: 10.1051/e3sconf/201912301012

Google Scholar

[45] D. Dubinin et al., Improving the installation for fire extinguishing with finely-dispersed water, Eastern-European Journal of Enterprise Technologies, 2/10 (92) (2018) 38–43.

DOI: 10.15587/1729-4061.2018.127865

Google Scholar

[46] K. Korytchenko et al., Experimental investigation of the fire-extinguishing system with a gas-detonation charge for fluid acceleration, Eastern-European Journal of Enterprise Technologies, 3/5 (93) (2018) 47– 54.

Google Scholar

[47] A. Kasimov et al., Numerical study of the process of compressing a turbulized two-temperature air charge in the diesel engine, Eastern-European Journal of Enterprise Technologies, 6/5 (96) (2018) 49– 53.

DOI: 10.15587/1729-4061.2018.150376

Google Scholar

[48] K. Korytchenko et al., Numerical simulation of initial pressure effect on energy input in spark discharge in nitrogen, Problems of Atomic Science and Technology, 122 (4) (2019) 116–119.

DOI: 10.46813/2019-122-116

Google Scholar

[49] K. Korytchenko et al., Experimental research into the influence of twospark ignition on the deflagration to detonation transition process in a detonation tube, Eastern-European Journal of Enterprise Technologies, 4/5 (100) (2019) 26–31.

DOI: 10.15587/1729-4061.2019.175333

Google Scholar

[50] K. Korytchenko et al., Experimental investigation of arc column expansion generated by high-energy spark ignition system, Problems of Atomic Science and Technology, 118 (9) (2018) 225–228.

Google Scholar

[51] K. Korytchenko et al., Challenges of energy measurements of low-energy spark discharges, 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), (2020) 421–424.

DOI: 10.1109/khpiweek51551.2020.9250172

Google Scholar