Modern Materials for Fire Protection of Reinforced Concrete Agro-Industrial Structures

Article Preview

Abstract:

This article presents the results of fire properties of modern materials, namely geopolymer fire-insulating mixtures of domestic production to provide fire protection of reinforced concrete structures of the agroindustrial complex. According to the data of the fire test, it has been established that with the thickness of a fire-proof geopolymer coating of 10 mm no heating of the surface of a reinforced concrete specimen (300<380 °С) or of the armature at the depth of its embedding (124.5<500 °С) up to the limit states has been noted. It they shown that the protective coating reduces the critical temperature of brittle fracture of reinforced concrete by a factor of 1.3 during 180 minutes of the test. It has been note that due to the protective properties of the coating, the temperature of armature heating at the depth of its laying decreases 4 times in comparison with the unprotected reinforced concrete specimen during 180 minutes of the test. The mechanism of formation of an effective fine-pore structure in the coating with its developed and high heat-absorbing and dissipating capacity has been reveale due to the transition of the binder into the glass-like state, which prevents both physically and chemically bound water vapor from escaping into the hydrate new formations of the geopolymer binder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-110

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Slyusar, M. Protsenko, A. Chernukha, et al., Improving the model of object detection on aerial photographs and video inunmanned aerial systems, Eastern-European Journal of Enterprise Technologies, 1/9 (115) (2022) 24–34.

DOI: 10.15587/1729-4061.2022.252876

Google Scholar

[2] V. Slyusar, A. Chernukha, O. Petrova, et al., Improving a neural network model for semantic segmentation of images of monitored objects in aerial photographs, Eastern-European Journal of Enterprise Technologies, 6/2 (114) (2021) 86–95.

DOI: 10.15587/1729-4061.2021.248390

Google Scholar

[3] V. Slyusar, M. Protsenko, A. Chernukha, et al., Construction of an advanced method for recognizing monitored objects by a convolutional neural network using a discrete wavelet transform, Eastern-European Journal of Enterprise Technologies, 4/9 (112) (2021) 65–77.

DOI: 10.15587/1729-4061.2021.238601

Google Scholar

[4] V. Slyusar, M. Protsenko, A. Chernukha, et al., Improvement of the model of object recognition in aero photographs using deep convolutional neural networks, Eastern-European Journal of Enterprise Technologies, 5/2 (113) (2021) 6–21.

DOI: 10.15587/1729-4061.2021.243094

Google Scholar

[5] A. Kovalov, R. Purdenko, Yu. Otrosh, V. Tomenko, N. Rashkevich, E. Shcholokov, M. Pidhornyy, N. Zolotova, O. Suprun, Assessment of fire resistance of fireproof reinforced concrete structures, Eastern-European Journal of Enterprise Technologies, 5/1 (119) (2022) 53–61

DOI: 10.15587/1729-4061.2022.266219

Google Scholar

[6] C.A. Vijan, A. Badanoiu, G. Voicu, A.I. Nicoara, Coatings Based on Phosphate Cements for Fire Protection of Steel Structuresб Materialsю, 14 (2021) 6213.

DOI: 10.3390/ma14206213

Google Scholar

[7] S.-N. Chen, C. Lin, H.-L. Hsu, et al., Inorganic Flame-Retardant Coatings Based on Magnesium Potassium Phosphate Hydrate, Materials, 15 (2022) 5317.

DOI: 10.3390/ma15155317

Google Scholar

[8] S. Guzii, Y. Otrosh, O. Guzii, A. Kovalov, K. Sotiriadis ,Determination of the Fire-Retardant Efficiency of Magnesite Thermal Insulating Materials to Protect Metal Structures from Fire, Materials Science Forum, 1038 (2021) 524–530.

DOI: 10.4028/www.scientific.net/msf.1038.524

Google Scholar

[9] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, 1006 (2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[10] A. Chernukha, A. Сhernukha, K. Ostapov, T. Kurska, Investigation of the Processes of Formation of a Fire Retardant Coating, Materials Science Forum, 1038 (2021) 480–485.

DOI: 10.4028/www.scientific.net/msf.1038.480

Google Scholar

[11] A. Chernukha, A. Chernukha, P. Kovalov, A. Savchenko, Thermodynamic study of fire-protective material, Materials Science Forum, 1038 (2021) 486–491.

DOI: 10.4028/www.scientific.net/msf.1038.486

Google Scholar

[12] L. Jong-Chan, P. Jong-Chul, S. Hun, Effect of external thermal insulation composite system with a non-combustible calcium silicate based mineral on the mitigation for reducing fast spread of flame, J. Korea Inst. Build. Constr, 16, (2016) 397–403.

DOI: 10.5345/jkibc.2016.16.5.397

Google Scholar

[13] Passive fire protection with calcium silicate materials. Online resource: https://www.promat.com/en/industry/technologies/calcium-silicates/passive-fire-protection/

Google Scholar

[14] A. Hu, Ch. Du, Y. Hua, et al., Preparation and Flame Retardant Properties of Calcium–Aluminium Hydrotalcite with Root Cutting Silicate Layers as Bamboo Flame Retardants, Materials, 14(23) (2021) 7319.

DOI: 10.3390/ma14237319

Google Scholar

[15] S. Guzii, T. Kurska, O. Khodakovskyy, A. Kovalchuk, Fire Protection of Steel with Thermal Insulation Granular Plate Material on Geocement-Based, Materials Science Forum, 1038 (2022) 524–530.

DOI: 10.4028/p-a1ae7r

Google Scholar

[16] V. Petránek, S. Guzii, L. Nevrivova, D. Zezulova, Thermal Insulating Materials for Energy Storage Application, Advanced Materials Research, 911 (2014) 30–35.

DOI: 10.4028/www.scientific.net/amr.911.30

Google Scholar

[17] V. Petranek, S. Guzii, K. Sotiriadis, L. Nevrivova. Study on the Properties of Geocement Based Thermal Insulating Materials for High Temperature Technical Appliances, Advanced Materials Research, 734–737 (2013) 2356–2359.

DOI: 10.4028/www.scientific.net/amr.734-737.2356

Google Scholar

[18] P. Krivenko, S. Guzii, L. Bodnarova, et al., Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete, Journal of Building Engineering, 8 (2016) 14–19.

DOI: 10.1016/j.jobe.2016.09.003

Google Scholar

[19] J. Sarazin, C. A. Davy, et al., Flame resistance of geopolymer foam coatings for the fire protection of steel, Composites Part B: Engineering, 222 (2021) 109045.

DOI: 10.1016/j.compositesb.2021.109045

Google Scholar

[20] M.-B. Watolla, G.J.G. Gluth, et al., Intumescent geopolymer-bound coatings for fire protection of steel, Journal of Ceramic Science and Technology, 8(3) (2017) 351–364.

Google Scholar

[21] N I Kozhukhova, et. al., High temperature effect on structure formation and performance of hybrid geopolymers, J. Phys.: Conf. Ser., 1353 (2019) 012066.

DOI: 10.1088/1742-6596/1353/1/012066

Google Scholar

[22] S. Guzii, I. Bazhelka, N. Svitlychna, V. Lashchivskiy, Protection of Wood from Burning with Paints on Alkaline Aluminosilicates-Based, Materials Science Forum, 1006 (2020) 19–24.

DOI: 10.4028/www.scientific.net/msf.1006.19

Google Scholar

[23] M. Sukhanevich, S. Guzii, The effect of technological factors on properties of alkali aluminosilicate systems used for preparation of fireproof coatings, Refractories and Industrial Ceramics, 45 (2004) 217–219.

DOI: 10.1023/b:refr.0000036733.85631.f1

Google Scholar

[24] P.V. Krivenko, E.K. Pushkarjeva, M.V. Sukhanevich, S.G. Guziy, Fireproof coatings on the basis of alkaline aluminum silicate systems, Ceramic Engineering and Science Proceedings, 29(10) (2009) 129–142.

DOI: 10.1002/9780470456200.ch13

Google Scholar

[25] K. Sotiriadis, S.Guzii, I. Kumpová, et al., The effect of firing temperature on the composition and microstructure of a geocement-based binder of sodium water-glass, Solid State Phenomena, 267 SSP (2017) 58–62.

DOI: 10.4028/www.scientific.net/ssp.267.58

Google Scholar

[26] K. Sotiriadis, S. Guzii, P. Mácová, et al., Thermal Behavior of an Intumescent Alkaline Aluminosilicate Composite Material for Fire Protection of Structural Elements, Journal of Materials in Civil Engineering, 31(6) (2019) 04019058.

DOI: 10.1061/(asce)mt.1943-5533.0002702

Google Scholar