Effect of Physical and Chemical Properties of Explosive Materials on the Conditions of their Use

Article Preview

Abstract:

The components of the most common explosive ordnance in Eastern Europe have been analysed. The most dangerous explosive materials that rescuers may encounter when disposing explosive ordnance and clearing territories from mines have been identified. Such hazardous materials include tetryl, texogen, trinitrotoluolol, mercury fulminate, lead azide, lead trinitroresorcinate. An analysis of the chemical structure and physical and chemical properties of such materials has been carried out. It has been established that explosive materials can be divided into two classes with similar values based on such parameters as detonation velocity, volume of explosion products, and explosion heat. It has been established that the chemical structure of their molecules corresponds to the said two classes of physical and chemical properties. The first class includes materials based on hydrocarbons, the second includes materials based on heavy metals. It has been established that the specific volume values for the second class materials increase significantly, and exceed the indicators for the first class materials. This is due to the difference in the density of such materials by 2 to 4 times. The established features of the physical and chemical and explosive parameters of explosive materials can be used in the development of standard operating procedures and plans of actions of rescuers in order to increase the safety of handling the explosive ordnance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-154

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ivanov E., Loboichenko V., Artemev S., Vasyukov A. Emergency situations with explosions of ammunition: Patterns of occurrence and progress. EasternEuropean Journal of Enterprise Technologies. 1 10 (2016) 26–35.

Google Scholar

[2] Vambol S., Vambol V., Bogdanov I., Suchikova Y., Rashkevich N. Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies. 6 10–90 (2017) 57–64.

DOI: 10.15587/1729-4061.2017.118213

Google Scholar

[3] Pospelov, B., Rybka, E., Samoilov, M., Morozov, I., Bezuhla, Y., Butenko, T., Mykhailovska, Y., Bondarenko, O., Veretennikova, J. Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises. Eastern-European Journal of Enterprise Technologies, 2 (10 (116)) (2022) 57–65.

DOI: 10.15587/1729-4061.2022.254500

Google Scholar

[4] Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A., Strejekurov, E., Shalomov, V. Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering. 91(1) (2018) 27–33.

DOI: 10.5604/01.3001.0012.9654

Google Scholar

[5] Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. Improving the installation for fire extinguishing with finelydispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10-92) (2018) 38-43.

DOI: 10.15587/1729-4061.2018.127865

Google Scholar

[6] Andronov, V., Pospelov, B., Rybka, E. Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)) (2017) 32–37.

DOI: 10.15587/1729-4061.2017.96694

Google Scholar

[7] Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Yu. Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies. 4/10 (100) (2019) 22–29..

DOI: 10.15587/1729-4061.2019.176579

Google Scholar

[8] Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52(3) (2014) 655-664.

Google Scholar

[9] Melnichenko, A., Kustov, M., Basmanov, O., Karatieieva, O., Shevchuk, N. Devising a procedure to forecast the level of chemical damage to the atmosphereduring active deposition of dangerous gases. Eastern-European Journal of Enterprise Technologiesthis link is disabled. , 1(10-115) (2022) 31–40.

DOI: 10.15587/1729-4061.2022.251675

Google Scholar

[10] Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)) (2018) 50–55.

DOI: 10.15587/1729-4061.2018.122419

Google Scholar

[11] Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R., Bezuhla, Yu., Hrachova, I., Nesterenko, R., Shumilova, А. Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise. 4/10 (106) (2020) 37–44.

DOI: 10.15587/1729-4061.2020.210059

Google Scholar

[12] Popov O., Iatsyshyn A., Kovach V., Artemchuk V., Taraduda D., Sobyna V., Sokolov D., Dement M., Yatsyshyn T. Conceptual approaches for development of informational and analytical expert system for assessing the NPP impact on the environment. Nuclear and Radiation Safety. 2018.

DOI: 10.32918/nrs.2018.3(79).09

Google Scholar

[13] Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. The use of pulsed high-speed liquid jet for putting out gas blow-out. International Journal of Multiphysics, 9/1 (2015) 9–20.

DOI: 10.1260/1750-9548.9.1.9

Google Scholar

[14] Tiutiunyk V., Ivanets H., Tolkunov I., Stetsyuk, E. System approach for readiness assessment units of civil defense to actions at emergency situations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 1 (2018) 99–105.

DOI: 10.29202/nvngu/2018-1/7

Google Scholar

[15] Prem, M., Purroy, M. E., Vargas, J.F. Landmines: the Local Effects of Demining. TSE Working Paper. (2022) 22-1305.

DOI: 10.31235/osf.io/3jzk6

Google Scholar

[16] Dorn, A.W. Eliminating Hidden Killers: How Can Technology Help Humanitarian Demining?. Stability: International Journal of Security and Development. 8(1) (2019) 5.

DOI: 10.5334/sta.743

Google Scholar

[17] Kulakov, O., Katunin, A., Kustov, M., Slepuzhnikov, E., Rudakov, S. Investigation of Reliability of Emergency Shutdown of Consumers in Electric Power Systems of Explosive Hazardous Zones. 2022 IEEE 3rd KhPI Week on Advanced Technology, KhPI Week 2022 - Conference Proceedings (2022).

DOI: 10.1109/khpiweek57572.2022.9916418

Google Scholar

[18] Vambol S., Vambol V., Abees Hmood Al-Khalidy K. Experimental study of the effectiveness of water-air suspension to prevent an explosion. Journal of Physics: Conference Series. 1294 7 (2019). 072009.

DOI: 10.1088/1742-6596/1294/7/072009

Google Scholar

[19] Williams, D. P., Myers, V., Silvious, M.S. Mine Classification With Imbalanced Data. IEEE Geoscience and Remote Sensing Letters. 6(3) (2009) 528-532.

DOI: 10.1109/lgrs.2009.2021964

Google Scholar

[20] Armstrong, R.W., Elban, W.L. Materials science and technology aspects of energetic (explosive) materials. Materials Science and Technology. Energetic (explosive) materials and deformation at high strain rates. 22(4) (2006) 381-395.

DOI: 10.1179/174328406x84049

Google Scholar

[21] O. Blyznyuk, A. Vasilchenko, A. Ruban, Y. Bezuhla, Improvement of fire resistance of polymeric materials at their filling with aluminosilicates, Materials Science Forum 1006 (2020) 55-61.

DOI: 10.4028/www.scientific.net/msf.1006.55

Google Scholar

[22] Palka, N., Szala, M., Czerwinska, E. Characterization of prospective explosive materials using terahertz time-domain spectroscopy. Appl. Opt. 55 (2016) 45754583.

DOI: 10.1364/ao.55.004575

Google Scholar

[23] Popov O., Iatsyshyn A., Kovach V., Artemchuk V., Taraduda D., Sobyna V., Sokolov D., Dement M., Hurkovskyi V., Nikolaiev K., Yatsyshyn T., Dimitriieva D. Physical features of pollutants spread in the air during the emergency at NPPs. Nuclear and Radiation Safety. 4 84 (2019) 11.

DOI: 10.32918/nrs.2019.4(84).11

Google Scholar

[24] Danchenko, Y., Andronov, V., Barabash, E., Obigenko, T., Rybka, E., Meleshchenko, R., Romin, A. Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies. 6 12–90 (2017) 4–12.

DOI: 10.15587/1729-4061.2017.118565

Google Scholar

[25] I. Ryshchenko, L. Lyashok, A. Vasilchenko, A. Ruban, L. Skatkov, Electrochemical synthesis of crystalline niobium oxide, Materials Science Forum 1038 (2021) 51-60.

DOI: 10.4028/www.scientific.net/msf.1038.51

Google Scholar

[26] Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise, 3/9 (93) (2018) 34–40.

DOI: 10.15587/1729-4061.2018.133127

Google Scholar

[27] Otrosh, Yu., Semkiv, O., Rybka, E., Kovalov, A. About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering. 708, (2019) 1.

DOI: 10.1088/1757-899x/708/1/012065

Google Scholar

[28] Kulakov, O., Katunin, A., Kozhushko, Y., Herasymov, S., Roianov, O., Gorbach, T. Usage of Lidar Systems for Detection of Hazardous Substances in Various Weather Conditions. IEEE Ukrainian Microwave Week, UkrMW 2020 - Proceedings, 9252783 (2020) 360-363.

DOI: 10.1109/ukrmw49653.2020.9252783

Google Scholar

[29] Shabanova, G.N., Korohodska, A.N., Kustov, M.V., Ivashchenko, M.Y., Taraduda, D.V. Barium-containing cement and concrete for protection against electromagnetic radiation. Functional Materialsthis. 28(2), (2021) 323–326.

Google Scholar

[30] Kustov, M.V., Kalugin, V.D., Deineka, V.V., Slepuzhnikov, E.D., Deyneka, D.M. Radioprotective cement for long-term storage of nuclear waste. Voprosy Khimii i Khimicheskoi Tekhnologii. 2 (2020) 73–81.

DOI: 10.32434/0321-4095-2020-129-2-73-81

Google Scholar

[31] Popov O., Iatsyshyn A., Kovach V., Artemchuk V., Taraduda D., Sobyna V., Sokolov D., Dement M., Yatsyshyn T., Matvieieva I. Analysis of possible causes of NPP emergencies to minimize risk of their occurrence. Nuclear and Radiation Safety. 1 81 (2019) 75–80.

DOI: 10.32918/nrs.2019.1(81).13

Google Scholar

[32] Kaglyak O., Romanov B., Romanova K., Ruban A., Shvedun V. Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation, Materials Science Forum 1038 (2021) 15-24.

DOI: 10.4028/www.scientific.net/msf.1038.15

Google Scholar

[33] Teslenko A., Chernukha A., Bezuglov O., Bogatov O., Kunitsa E., Kalyna V., Katunin A., Kobzin V., Minka S. Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors. Eastern-European Journal of Enterprise Technologies. 5 10–10 (2019) 42–49.

DOI: 10.15587/1729-4061.2019.181668

Google Scholar

[34] Janssen, T.J. Explosive materials: Classification, composition and properties. Nova Science Publishers, Inc. (2011) 292.

Google Scholar

[35] Chatterjee, S., Deb, U., Datta, S., Walther, C., Gupta, D.K. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chemosphere. 184, (2017) 438-451.

DOI: 10.1016/j.chemosphere.2017.06.008

Google Scholar

[36] Zhou, Sh., Gao, J., Luo, Zh., Hu, Sh., Wang L., Wang T. Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism. Energy. 239 (C) (2022) 122218.

DOI: 10.1016/j.energy.2021.122218

Google Scholar