[1]
O.Z. Dveirin, O.V. Andreev, A.V. Kondrat'ev, V.Ye. Haidachuk, Stressed state in the vicinity of a hole in mechanical joint of composite parts, International Applied Mechanics. 57, 2 (2021) 234–247
DOI: 10.1007/s10778-021-01076-4
Google Scholar
[2]
O. Larin, Probabilistic model of fatigue damage accumulation in rubberlike materials, Strength of Materials. 47 (2015) 849–858.
DOI: 10.1007/s11223-015-9722-3
Google Scholar
[3]
A. Larin, Yu. Vyazovichenko, E. Barkanov, M. Itskov, Experimental Investigation of Viscoelastic Characteristics of Rubber-Cord Composites Considering the Process of Their Self-Heating, Strength of Materials. 50 (2018) 841–851.
DOI: 10.1007/s11223-019-00030-7
Google Scholar
[4]
T. Roland, M. David, S. Oliver, L. Roman, Mechanical performance of textile-reinforced hoses assessed by a truss-based unit cell model, International Journal of Engineering Science. 141 (2019) 47–66.
DOI: 10.1016/j.ijengsci.2019.05.006
Google Scholar
[5]
N. M. Fidrovska, Ye. D. Slepuzhnikov, V. O. Shevchenko, D. V. Legeyda, S. V. Vasyliev, Determination of the stability of a three-layer shell of a traveling wheel with light filler, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2 (2022) 37–41.
DOI: 10.33271/nvngu/2022-2/037
Google Scholar
[6]
G. Fedorko, V. Molnar, M. Dovica, T. Toth, J. Fabianova, Failure analysis of irreversible changes in the construction of the damaged rubber hoses, Engineering Failure Analysis. 58 (2015) 31–43.
DOI: 10.1016/j.engfailanal.2015.08.042
Google Scholar
[7]
Kondratiev, V. Gaidachuk, Weight-based optimization of sandwich shelled composite structures with a honeycomb filler, Eastern-European Journal of Enterprise Technologies. 1, 1(97) (2019) 24–33.
DOI: 10.15587/1729-4061.2019.154928
Google Scholar
[8]
P. Arunachala, R. Rastak, C. Linder, Energy based fracture initiation criterion for strain-crystallizing rubber-like materials with pre-existing cracks, Journal of the Mechanics and Physics of Solids. 157 (2021) 104617.
DOI: 10.1016/j.jmps.2021.104617
Google Scholar
[9]
A.V. Kondratiev, V.E. Gaidachuk, Mathematical analysis of technological parameters for producing superfine prepregs by flattening carbon fibers, Mechanics of Composite Materials. 57, 1 (2021) 91–100
DOI: 10.1007/s11029-021-09936-3
Google Scholar
[10]
J. Schieppati, B. Schrittesser, A. Wondracek, S. Robin, A. Holzner, G. Pinter, Temperature impact on the mechanical and fatigue behavior of a non-crystallizing rubber, International Journal of Fatigue. 144 (2021) 106050.
DOI: 10.1016/j.ijfatigue.2020.106050
Google Scholar
[11]
J. Łuczko, A. Czerwiński, Experimental and numerical investigation of parametric resonance of flexible hose conveying non-harmonic fluid flow, Journal of Sound and Vibration. 373 (2016) 236–250.
DOI: 10.1016/j.jsv.2016.03.029
Google Scholar
[12]
J. Cho, Anisotropic Large Deformation and Fatigue Damage of Rubber-fabric Braid Layered Composite Hose, Procedia Engineering. 173 (2017) 1169–1176.
DOI: 10.1016/j.proeng.2016.12.097
Google Scholar
[13]
J. R. Cho, Y. H. Yoon, C. W. Seo, Y. G. Kim, Fatigue life assessment of fabric braided composite rubber hose in complicated large deformation cyclic motion, Finite Elements in Analysis and Design. 100 (2015) 65–76.
DOI: 10.1016/j.finel.2015.03.002
Google Scholar
[14]
M. Tonatto, M. Forte, V. Titab, S. Amico, Progressive damage modeling of spiral and ring composite structures for offloading hoses, Materials & Design. 108 (2016) 374–382.
DOI: 10.1016/j.matdes.2016.06.124
Google Scholar
[15]
M. Tonatto, V. Tita, M. Forte, S. Amico, Multi-scale analyses of a floating marine hose with hybrid polyaramid/polyamide reinforcement cords, Marine Structures. 60 (2018) 279–292.
DOI: 10.1016/j.marstruc.2018.04.005
Google Scholar
[16]
A. Sharshanov, O. Tarakhno, A. Babayev, O. Skorodumova, Mathematical Modeling of the Protective Effect of Ethyl Silicate Gel Coating on Textile Materials under Conditions of Constant or Dynamic Thermal Exposure, Key Engineering Materials. 927 (2022) 77–86.
DOI: 10.4028/p-8t33rc
Google Scholar
[17]
O. Skorodumova, O. Tarakhno, O. Chebotaryova, Improving the Fire-Retardant Properties of Cotton-Containing Textile Materials through the Use of Organo-Inorganic SiO2 Sols, Key Engineering Materials. 927 (2022) 63–68.
DOI: 10.4028/p-jbv49r
Google Scholar
[18]
O. Larin, O. Morozov, S. Nazarenko, G. Chernobay, A. Kalynovskyi, R. Kovalenko, S. Fedulova, P. Pustovoitov, Determining mechanical properties of a pressure fire hose the type of «T», Eastern-European Journal of Enterprise Technologies. 6 (2019) 63–70.
DOI: 10.15587/1729-4061.2019.184645
Google Scholar
[19]
S. Nazarenko, R. Kovalenko, A. Gavryliuk, S. Vinogradov, B. Kryvoshei, S. Pavlenko, I. Boikov, V. Muzichuck, P. Kalinin, Determining the dissipative properties of a flexible pipeline's material at stretching in the transverse direction taking its structural elements into consideration, Eastern-European Journal of Enterprise Technologies. 2 (2021) 12–20.
DOI: 10.15587/1729-4061.2021.227039
Google Scholar
[20]
S. Nazarenko, R. Kovalenko, V. Asotskyi, G. Chernobay, A. Kalynovskyi, I. Tsebriuk, O. Shapovalov, I. Shasha, V. Demianyshyn, A. Demchenko, Determining mechanical properties at the shear of the material of «T» type pressure fire hose based on torsion tests, Eastern-European Journal of Enterprise Technologies. 5 (2020) 45–55.
DOI: 10.15587/1729-4061.2020.212269
Google Scholar
[21]
S. Nazarenko, G. Kushnareva, N. Maslich, L. Knaub, N. Naumenko, R. Kovalenko, V. Konkin, E. Sukharkova, O. Kolienov, Establishment of the dependence of the strength indicator of the composite material of pressure hoses on the character of single damages, Eastern-European Journal of Enterprise Technologies. 6 (2021) 21–27.
DOI: 10.15587/1729-4061.2021.248972
Google Scholar
[22]
S. Nazarenko, R. Kovalenko, O. Kolienov, D. Saveliev, V. Miachyn, V. Demianyshyn, Influence of the artificial defect on the flexible pipeline twist angle, Archives of Materials Science and Engineering. 114 (2022) 58–68.
DOI: 10.5604/01.3001.0016.0026
Google Scholar