[1]
Y. Dreval, V. Loboichenko, A. Malko, A. Morozov, S. Zaika, V. Kis, The Problem of Comprehensive Analysis of Organic Agriculture as a Factor of Environmental Safety, J. Environ. Clim. Technol., 24 (2020) 58–71.
DOI: 10.2478/rtuect-2020-0004
Google Scholar
[2]
O. Popov, A. Iatsyshyn, V. Kovach, V. Artemchuk, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, T. Yatsyshyn, Conceptual approaches for development of informational and analytical expert system for assessing the NPP impact on the environment, Nuclear and Radiation Safety, (2018)
DOI: 10.32918/NRS.2018.3(79).09
Google Scholar
[3]
B. Pospelov, E. Rybka, R. Meleshchenko, P. Borodych, S. Gornostal, Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures, Eastern-European Journal of Enterprise, 1/10 (97) (2019) 29–35.
DOI: 10.15587/1729-4061.2019.155027
Google Scholar
[4]
B. Pospelov, E. Rybka, R. Meleshchenko, S.Gornostal, S. Shcherbak, Results of experimental research into correlations between hazardous factors of ignition of materials in premises, Eastern-European Journal of Enterprise Technologies, 6 (10 (90)) (2017) 50–56.
DOI: 10.15587/1729-4061.2017.117789
Google Scholar
[5]
Y. Abramov, V. Borisenko, V. Krivtsova, Design of control algorithm over technical condition of hydrogen generators based on hydro-reactive compositions, Eastern-European Journal of Enterprise Technologies, 5 8–89 (2017) 16–21.
DOI: 10.15587/1729-4061.2017.112200
Google Scholar
[6]
V. Sadkovyi, B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, А. Rud, K. Karpets, Yu. Bezuhla, Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations, Eastern-European Journal of Enterprise, 6/10 (108) (2020) 14–22.
DOI: 10.15587/1729-4061.2020.218714
Google Scholar
[7]
K. Кorytchehko, A. Ozerov, D. Vinnikov, Y. Skob, D. Dubinin, R. Meleshchenko, Numerical simulation of influence of the non-equilibrium excitation of molecules on direct detonation initiation by spark discharge, Probl. At. Sci. Technol., 116 (2018) 194–199.
Google Scholar
[8]
A.N. Semko, M.V. Beskrovnaya, S.A. Vinogradov, I.N. Hritsina, N.I. Yagudina, The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52(3) (2014) 655–664.
Google Scholar
[9]
S. Vambol, V. Vambol, K. Abees Hmood Al-Khalidy, Experimental study of the effectiveness of water-air suspension to prevent an explosion, Journal of Physics: Conference Series, 1294 7 (2019) 072009.
DOI: 10.1088/1742-6596/1294/7/072009
Google Scholar
[10]
A. Teslenko, A. Chernukha, O. Bezuglov, O. Bogatov, E. Kunitsa, V. Kalyna, A. Katunin, V. Kobzin, S. Minka, Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors. Eastern-European Journal of Enterprise Technologies, 5 10–101 (2019) 42–49.
DOI: 10.15587/1729-4061.2019.181668
Google Scholar
[11]
A. Kovalov, Y. Otrosh, O. Ostroverkh, O. Hrushovinchuk, O. Savchenko, Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method, E3S Web of Conferences, 60 (2018) 00003.
DOI: 10.1051/e3sconf/20186000003
Google Scholar
[12]
B. Pospelov, R. Meleshchenko, O. Krainiukov, K. Karpets, O. Petukhova, Y. Bezuhla, T. Butenko, V. Horinova, P. Borodych, E. Kochanov, A method for preventing the emergency resulting from fires in the premises through operative control over a gas medium, Eastern-European Journal of Enterprise Technologies, 10–103 (2020) 6–13.
DOI: 10.15587/1729-4061.2020.194009
Google Scholar
[13]
A. Kovalov, Y. Otrosh, M. Surianinov, T. Kovalevska, Experimental and Computer Researches of Ferroconcrete Floor Slabs at High-Temperature Influences, Materials Science Forum, 968 (2019) 361–367.
DOI: 10.4028/www.scientific.net/msf.968.361
Google Scholar
[14]
A. Kovalov, Y. Otrosh, O. Chernenko, M. Zhuravskij, M. Anszczak, Modeling of non-stationary heating of steel plates with fire-protective coatings in ansys under the conditions of hydrocarbon fire temperature mode, Materials Science Forum, 1038 MSF (2021) 514–523.
DOI: 10.4028/www.scientific.net/msf.1038.514
Google Scholar
[15]
Y. Otrosh, A. Kovalov, O. Semkiv, I. Rudeshko, V. Diven, Methodology remaining lifetime determination of the building structures, MATEC Web of Conferences, 230 (2018) 02023.
DOI: 10.1051/matecconf/201823002023
Google Scholar
[16]
Bashynska, O., Otrosh, Y., Holodnov, O., Tomashevskyi, A., Venzhego, G. Methodology for calculating the technical state of a reinforced-concrete fragment in a building influenced by high temperature (2020) Materials Science Forum, 1006 MSF, p.166–172.
DOI: 10.4028/www.scientific.net/msf.1006.166
Google Scholar
[17]
S. Pozdieiev, O. Nuianzin, S. Sidnei, S. Shchipets, Computational study of bearing walls fire resistance tests efficiency using different combustion furnaces configurations, MATEC Web of Conferences, 116 (2017) 02027.
DOI: 10.1051/matecconf/201711602027
Google Scholar
[18]
A. Kovalov, R. Purdenko, Yu. Otrosh, V. Tomenko, N. Rashkevich, E. Shcholokov, M. Pidhornyy, N. Zolotova, O. Suprun, Assessment of fire resistance of fireproof reinforced concrete structures, Eastern-European Journal of Enterprise Technologies, 5/1 (119) (2022) 53–61
DOI: 10.15587/1729-4061.2022.266219
Google Scholar
[19]
A. Kovalov, Y. Otrosh, S. Vedula, О. Danilin, T. Kovalevska, Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors, Scientific Bulletin of National Mining University, 3 (2019) 46–53.
DOI: 10.29202/nvngu/2019-3/9
Google Scholar
[20]
Y. Otrosh, M. Surianinov, A. Golodnov, O. Starova, Experimental and Computer Researches of Ferroconcrete Beams at High-Temperature Influences, Materials Science Forum, 968 (2019) 355–360.
DOI: 10.4028/www.scientific.net/msf.968.355
Google Scholar
[21]
O. Popov, A. Iatsyshyn, V. Kovach, V. Artemchuk, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, V. Hurkovskyi, K. Nikolaiev, T. Yatsyshyn, D. Dimitriieva, Physical features of pollutants spread in the air during the emergency at NPPs. Nuclear and Radiation Safety, 4 84 (2019) 11.
DOI: 10.32918/nrs.2019.4(84).11
Google Scholar
[22]
Y. Otrosh, O. Semkiv, E. Rybka, A. Kovalov, About need of calculations for the steel framework building in temperature influences conditions, Materials Science and Engineering, 708 (2019) 012065.
DOI: 10.1088/1757-899x/708/1/012065
Google Scholar
[23]
M. Surianinov, V. Andronov, Y. Otrosh, T. Makovkina, S. Vasiukov, Concrete and Fiber Concrete Impact Strength, Materials Science Forum, 1006 (2020) 101–106.
DOI: 10.4028/www.scientific.net/msf.1006.101
Google Scholar
[24]
A. Vasilchenko, M. Surianinov, Y. Otrosh, V. Nikitin, Features of Passing a Shock Wave in a Long Communication Passageway with Walls of Different Rigidity. IOP Conf. Series: Materials Science and Engineering, 1164 (2021) 012083.
DOI: 10.1088/1757-899x/1164/1/012083
Google Scholar
[25]
Y. Skob, M. Ugryumov, Y. Dreval. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum, 1006 (2020) 117–122.
DOI: 10.4028/www.scientific.net/msf.1006.117
Google Scholar
[26]
A. Vasilchenko, O. Danilin, T. Lutsenko, A. Ruban, Features of Evaluation of Fire Resistance of Reinforced Concrete Ribbed Slab under Combined Effect "Explosion-Fire", Materials Science Forum, 1038 (2021) 492–499.
DOI: 10.4028/www.scientific.net/msf.1038.492
Google Scholar
[27]
V. Men'shikov, Y. Skob, M. Ugryumov, Solution of the three-dimensional turbomachinery blade row flow field problem with allowance for viscosity effects, Fluid Dynamics, 26 6 (1991) 889–896.
DOI: 10.1007/bf01056792
Google Scholar
[28]
Y. Skob, M. Ugryumov, E. Granovskiy, Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies, J. Environ. Clim. Technol., 23 (2019) 1–14.
DOI: 10.2478/rtuect-2019-0075
Google Scholar
[29]
Y. Skob, M. Ugryumov, E. Granovskiy, Numerical assessment of hydrogen explosion consequences in a mine tunnel, Int. J. Hydrog. Energy, 46 (2021) 12361–12371.
DOI: 10.1016/j.ijhydene.2020.09.067
Google Scholar
[30]
Y. Skob, M. Ugryumov, Y. Dreval, S. Artemiev, Numerical Evaluation of Safety Wall Bending Strength during Hydrogen Explosion, Materials Science Forum, 1038 (2021) 430–436.
DOI: 10.4028/www.scientific.net/msf.1038.430
Google Scholar