Cluster Mechanism of the Explosive Processes Initiation in the Matter

Article Preview

Abstract:

The relationship between substance characteristic temperatures: autoignition, melting, flash, boiling is demonstrated and analyzed. Based on the oscillatory and step changes presence, a conclusion was made about the supramolecular structures presence and periodicity in the n-alkanes homologous series. A method for modeling equivalent lengths of peroxide supramolecular structures for predicting the explosion and fire hazard parameters of n-alkanes is proposed. An approximation dependence was developed for predicting autoignition temperatures tai of n-alkanes. It is shown that stoichiometric concentrations of the various supramolecular peroxide structures formation accord to different flammability and explosion limits. A correlation between tai and Anti-Knock Index (AKI) was established. An approximation dependence was developed for predicting n-alkanes AKI. The detonation propensity index КD was introduced based on cluster supramolecular structures modeling and melting temperatures. It is shown that КD indicator correlates with the n-alkanes AKI and with the explosives detonation velocity. The possibility of taking into account during calculations the supramolecular structures presence at the combustion stage confirms their existence.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-142

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Zavialova, M. Grygorian, V. Kostenko, N. Liashok, T. Kostenko, V. Pokaliuk, Theoretical basis for the formation of damaging factors during the coal aerosol explosion, Mining of Mineral Deposits, 15/4 (2021) 130–138.

DOI: 10.33271/mining15.04.130

Google Scholar

[2] O Kulakov, A. Katunin, Y. Kozhushko, S. Herasymov, O. Roianov, T. Gorbach, Usage of Lidar Systems for Detection of Hazardous Substances in Various Weather Conditions 2020 IEEE Ukrainian Microwave Week, UkrMW 2020 – Proceedings, 9252783 (2020) 360–363.

DOI: 10.1109/ukrmw49653.2020.9252783

Google Scholar

[3] M. Kustov, V. Kalugin, V. Tutunik, O. Tarakhno, Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere, Voprosy Khimii i Khimicheskoi Tekhnologii, 1 (2019) 92–99.

DOI: 10.32434/0321-4095-2019-122-1-92-99

Google Scholar

[4] D. Dubinin, K. Korytchenko, A. Lisnyak, I. Hrytsyna, V. Trigub, Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge, Eastern-European Journal of Enterprise Technologies, 6(10-90) (2017) 11–16.

DOI: 10.15587/1729-4061.2017.114504

Google Scholar

[5] S. Vambol, V. Vambol, Abees Hmood Al-Khalidy K. Experimental study of the effectiveness of water-air suspension to prevent an explosion, Journal of Physics: Conference Series, 1294/7(2019) 072009.

DOI: 10.1088/1742-6596/1294/7/072009

Google Scholar

[6] A. Semko, O. Rusanova, O. Kazak, M. Beskrovnaya, S. Vinogradov, I. Gricina, The use of pulsed high-speed liquid jet for putting out gas blow-out, International Journal of Multiphysics, 9/1 (2015) 9–20.

DOI: 10.1260/1750-9548.9.1.9

Google Scholar

[7] A.N. Semko, M.V. Beskrovnaya, S.A. Vinogradov, I.N. Hritsina, N.I. Yagudina, The usage of high speed impulse liquid jets for putting out gas blowouts, Journal of Theoretical and Applied Mechanics, 52(3) (2014) 655–664.

Google Scholar

[8] K. Korytchenko, A. Ozerov, D. Vinnikov, Y. Skob, D. Dubinin, R. Meleshchenko, Numerical simulation of influence of the non-equilibrium excitation of molecules on direct detonation initiation by spark discharge, Problems of Atomic Science and Technology,116(4) (2018) 194–199.

DOI: 10.46813/2021-134-171

Google Scholar

[9] K. Korytchenko, O. Sakun, D. Dubinin, Y. Khilko, E. Slepuzhnikov, A. Nikorchuk, I. Tsebriuk, Experimental investigation of the fire-extinguishing system with a gas-detonation charge for fluid acceleration, Eastern-European Journal of Enterprise Technologies, 3/5(93) (2018) 47–54.

DOI: 10.15587/1729-4061.2018.134193

Google Scholar

[10] B. Pospelov, V. Andronov, E. Rybka, V. Popov, A. Romin, Experimental study of the fluctuations of gas medium parameters as early signs of fire, Eastern-European Journal of Enterprise Technologies,1(10–91) (2018) 50–55.

DOI: 10.15587/1729-4061.2018.122419

Google Scholar

[11] B. Pospelov, V. Andronov, E. Rybka, V. Popov, O. Semkiv, Development of the method of frequency-temporal representation of fluctuations of gaseous medium parameters at fire, Eastern-European Journal of Enterprise Technologies, 2/10(92) (2018) 44–49.

DOI: 10.15587/1729-4061.2018.125926

Google Scholar

[12] V. Andronov, B. Pospelov, E. Rybka, Development of a method to improve the performance speed of maximal fire detectors, Eastern-European Journal of Enterprise Technologies, 2/9(86) (2017) 32–37.

DOI: 10.15587/1729-4061.2017.96694

Google Scholar

[13] B. Pospelov, V. Andronov, E. Rybka, M. Samoilov, O. Krainiukov, I. Biryukov, T. Butenko, Yu. Bezuhla, K. Karpets, E. Kochanov, Development of the method of operational forecasting of fire in the premises of objects under real conditions, Eastern-European Journal of Enterprise, 2/10(110) (2021) 43–50.

DOI: 10.15587/1729-4061.2021.226692

Google Scholar

[14] B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, S. Gornostal, Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials, Eastern-European Journal of Enterprise Technologies,5(10) (2018) 25–30.

DOI: 10.15587/1729-4061.2018.142995

Google Scholar

[15] B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, P. Borodych, Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises, Eastern-European Journal of Enterprise Technologies,3(9–93) (2018) 34–40.

DOI: 10.15587/1729-4061.2018.133127

Google Scholar

[16] M. Boot, M. Tian, E. Hensen, S. Mani, Impact of fuel molecular structure on autoignition behavior: design rules for future high performance gasolines, Progress in Energy and Combustion Science, 60(2017) 1–25.

DOI: 10.1016/j.pecs.2016.12.001

Google Scholar

[17] S. Kahwaji, M. White, Organic Phase Change Materials for Thermal Energy Storage: Influence of Molecular Structure on Properties, Molecules, 26 (2021) 6635.

DOI: 10.3390/molecules26216635

Google Scholar

[18] D. Tregubov, O. Tarakhno, V. Deineka, F. Trehubova, Oscillation and Stepwise of Hydrocarbon Melting Temperatures as a Marker of their Cluster Structure, Solid State Phenomena, 334 (2022) 124–130.

DOI: 10.4028/p-3751s3

Google Scholar

[19] O. Tarakhno, D. Tregubov, K. Zhernoklev,V. Kovregin, Osnovni polozhennya protsesu horinnya. Vynyknennya protsesu horinnya, NUZZU, Kharkiv, 2020[in Ukrainian].

Google Scholar

[20] S. Merchant, F. Goldsmith, A. Vandeputte, M. Burke, S. Klippenstein, W. Green, Understanding low-temperature first-stage ignition delay: Propane, Comb. and Flame,162(10) (2015) 3658–3673.

DOI: 10.1016/j.combustflame.2015.07.005

Google Scholar

[21] I. Glassman, R. Yetter, Combustion, Elsevier, London, 2014.

Google Scholar

[22] H. Wu, Zh. Hu, X. Dong, S. Zhang, Zh. Cao, Sh. Lin, Numerical Investigation of Negative Temperature Coefficient Effects on Sooting Characteristics in a Laminar Co-flow Diffusion Flame, ACS Omega, 6 (2021) 15156−15167.

DOI: 10.1021/acsomega.1c01397

Google Scholar

[23] Quickly find chemical information. PubChem. Information on https://pubchem.ncbi.nlm.nih.gov/.

Google Scholar

[24] D. Tregubov, O. Tarakhno, D. Sokolov, F. Tregubova, The oscillation of n-alkanes characteristic temperatures under the action the cluster structure of substance, Problems of emergency situations, 32 (2020) 14–30 [in Ukrainian].

Google Scholar

[25] J. Piehl,A. Zyada,L. Bravo,O. Samimi-Abianeh, Review of Oxidation of Gasoline Surrogates and Its Components, Journal of Combustion, 2018 (2018) 1–27.

DOI: 10.1155/2018/8406754

Google Scholar

[26] M. Reichel,B. Krumm, Yu. Vishnevskiy,S. Blomeyer,J. Schwabedissen, H. Stammler, K. Karaghiosoff, Solid-State and Gas-Phase Structures and Energetic Properties of the Dangerous Methyl and Fluoromethyl Nitrates, Angewandte Chemie International Edition, 58(51)(2019)18557–18561.

DOI: 10.1002/anie.201911300

Google Scholar

[27] Yu. Hapon, D. Tregubov, E. Slepuzhnikov, V. Lypovyi, Cluster Structure Control of Coatings by Electrochemical Coprecipitation of Metals to Obtain Target Technological Properties, Solid State Phenomena, 334 (2022) 70–76.

DOI: 10.4028/p-4ws8gz

Google Scholar

[28] D. Tregubov, A. Sharshanov, D. Sokolov, F. Tregubova, Forecasting the smallest supramolecular formations for alkanes of normal and isomeric structure, Problems of emergency situations,35 (2022) 63–75[in Ukrainian].

DOI: 10.52363/2524-0226-2022-35-5

Google Scholar

[29] B. Pospelov, E. Rybka, R. Meleshchenko, S. Gornostal, S. Shcherbak, Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies,6(10–90) (2017) 50–56.

DOI: 10.15587/1729-4061.2017.117789

Google Scholar

[30] R. Meyer, J. Köhler, A. Homberg, Explosives, Wiley-VCH, Weinheim, 2016.

Google Scholar