Effect of Mercerization on Mechanical Properties of Grewia Optiva Natural Fiber Polymer Composites

Article Preview

Abstract:

The concerns towards sustainable development have triggered the need of adopting biodegradable products in different applications. The natural fibers are being widely explored in the field of composites for various applications. Sustainable architecture is also seeking the research and development of new materials to minimize the negative environmental effect of the traditional structural materials. A bast fiber obtained from Grewia Optiva (G.O.) tree is abundantly available in the sub-Himalayan terrains and is still underutilized in the field of biocomposites. The promotion of G.O. fiber in fabrication of biocomposites may give a source of income and employment to rural hilly populations. This research work utilizes the G.O. fiber collected from the Okhalkanda block of Nainital district of Uttarakhand to develop biocomposites. The effect of mercerization on the water absorption behavior and mechanical properties has been also studied. It is found that the treatment of fibers with NaOH reduces the water absorption tendency of G.O. Natural Fiber Reinforced Biocomposites (NFRB) upto 41.05% and the mechanical properties are also improved by appreciable amount. The tensile and flexural strength obtained are 141.45 MPa and 109.84 MPa respectively for mercerized fiber reinforcement. Impact strength and mode-I fracture toughness have been recorded as 11.97 KJ/m2 and 1.85 MPa√m respectively. SEM images of fractured surfaces indicate good bonding of mercerized fibers as compared to untreated fibers with epoxy matrix. Hence the Grewia Optiva biocomposites have potential to be used in different architectural applications like wall panels, false ceilings, doors, windows, etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-142

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chandrathilaka, E. R. K., Baduge, S. K., Mendis, P., &Thilakarathna, P. S. M. (2021, December). Structural applications of synthetic fibre reinforced cementitious composites: A review on material properties, fire behaviour, durability and structural performance. In Structures (Vol. 34, pp.550-574). Elsevier.

DOI: 10.1016/j.istruc.2021.07.090

Google Scholar

[2] Lau, K. T., Hung, P. Y., Zhu, M. H., &Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222-233.

DOI: 10.1016/j.compositesb.2017.10.038

Google Scholar

[3] Reddy, P. V., Reddy, R. S., Rao, J. L., Krishnudu, D. M., & Prasad, P. R. (2021). An overview on natural fiber reinforced composites for structural and non-structural applications. Materials Today: Proceedings, 45, 6210-6215.

DOI: 10.1016/j.matpr.2020.10.523

Google Scholar

[4] Sullins, T., Pillay, S., Komus, A., &Ning, H. (2017). Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering, 114, 15-22.

DOI: 10.1016/j.compositesb.2017.02.001

Google Scholar

[5] Singh, H., Singh, J. I. P., Singh, S., Dhawan, V., & Tiwari, S. K. (2018). A brief review of jute fibre and its composites. Materials Today: Proceedings, 5(14), 28427-28437.

DOI: 10.1016/j.matpr.2018.10.129

Google Scholar

[6] Kim, J. T., & Netravali, A. N. (2010). Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Composites Part A: Applied science and manufacturing, 41(9), 1245-1252.

DOI: 10.1016/j.compositesa.2010.05.007

Google Scholar

[7] Adeniyi, A. G., Onifade, D. V., Ighalo, J. O., &Adeoye, A. S. (2019). A review of coir fiber reinforced polymer composites. Composites Part B: Engineering, 176, 107305.

DOI: 10.1016/j.compositesb.2019.107305

Google Scholar

[8] Muhammad, A., Rahman, M., Hamdan, S., & Sanaullah, K. (2019). Recent developments in bamboo fiber-based composites: a review. Polymer bulletin, 76(5), 2655-2682.

DOI: 10.1007/s00289-018-2493-9

Google Scholar

[9] Venkateshwaran, N., & Elayaperumal, A. (2010). Banana fiber reinforced polymer composites-a review. Journal of Reinforced Plastics and Composites, 29(15), 2387-2396.

DOI: 10.1177/0731684409360578

Google Scholar

[10] Khosla, P. K., Pal, R. N., Negi, S. S., &Kaushal, P. S. (1982). Genetic evaluation of nutritional parameters in leaf fodder species-GrewiaoptivaBurrett. In Improvement of forest biomass: symposium proceedings/edited by PK Khosla. Solan, India: Indian Society of Tree Scientists, c1982.

Google Scholar

[11] Kumar, R. R., Chauhan, J., & Joshi, U. Social Economical and Medicinal Importance of Grewiaoptiva.

Google Scholar

[12] Singh, C., & Singh, R. (2019). Grewiaoptiva (Drumm. Ex Burr)-a multi-purpose tree under agroforestry in sub-tropical region of western Himalaya. Journal of Tree Sciences, 37(2), 36-43.

DOI: 10.5958/2455-7129.2018.00015.8

Google Scholar

[13] Rana, A. K., Potluri, P., & Thakur, V. K. (2021). Cellulosic Grewia optiva fibres: towards chemistry, surface engineering and sustainable materials. Journal of Environmental Chemical Engineering, 9(5), 106059.

DOI: 10.1016/j.jece.2021.106059

Google Scholar

[14] Kumar, S., Patel, V. K., Mer, K. K. S., Gangil, B., Singh, T., &Fekete, G. (2019). Himalayan natural fiber-reinforced epoxy composites: effect of Grewiaoptiva/Bauhinia Vahlii fibers on physico-mechanical and dry sliding wear behaviour. Journal of Natural Fibers.

DOI: 10.1080/15440478.2019.1612814

Google Scholar

[15] Karakoti, A., Aseer, J. R., Dasan, P. K., & Rajesh, M. (2020). Micro cellulose grewia optiva fiber-reinforced polymer composites: relationship between structural and mechanical properties. Journal of Natural Fibers, 1-12.

DOI: 10.1080/15440478.2020.1800549

Google Scholar

[16] Singha, A. S., & Thakur, V. K. (2010). Synthesis and characterization of short Grewiaoptiva fiber‐based polymer composites. Polymer Composites, 31(3), 459-470.

DOI: 10.1002/pc.20825

Google Scholar

[17] Sawpan, M. A., Pickering, K. L., & Fernyhough, A. (2011). Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A: Applied Science and Manufacturing, 42(8), 888-895.

DOI: 10.1016/j.compositesa.2011.03.008

Google Scholar

[18] Noori, A., Lu, Y., Saffari, P., Liu, J., & Ke, J. (2021). The effect of mercerization on thermal and mechanical properties of bamboo fibers as a biocomposite material: A review. Construction and Building Materials, 279, 122519.

DOI: 10.1016/j.conbuildmat.2021.122519

Google Scholar

[19] Verma, D., & Goh, K. L. (2021). Effect of mercerization/alkali surface treatment of natural fibres and their utilization in polymer composites: Mechanical and morphological studies. Journal of Composites Science, 5(7), 175.

DOI: 10.3390/jcs5070175

Google Scholar

[20] Hashim, M.Y., Roslan, M.N., Amin, A.M., Zaidi, A. M. A., & Ariffin, S. (2012). Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: A brief review. International Journal of Materials and Metallurgical Engineering, 6(8), 784-790.

Google Scholar

[21] Kumari, Y. R., Ramanaiah, K., Prasad, A. R., Reddy, K. H., Sanaka, S. P., & Prudhvi, A. K. (2021). Experimental investigation of water absorption behaviour of sisal fiber reinforced polyester and sisal fiber reinforced poly lactic acid composites. Materials Today: Proceedings, 44, 935-940.

DOI: 10.1016/j.matpr.2020.11.002

Google Scholar

[22] Ouarhim, W., Zari, N., & Bouhfid, R. (2019). Mechanical performance of natural fibers–based thermosetting composites. In Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites (pp.43-60). Woodhead Publishing.

DOI: 10.1016/b978-0-08-102292-4.00003-5

Google Scholar

[23] Ilyas, R. A., Zuhri, M. Y. M., Aisyah, H. A., Asyraf, M. R. M., Hassan, S. A., Zainudin, E. S., & Sari, N. H. (2022). Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1), 202

DOI: 10.3390/polym14010202

Google Scholar