[1]
X.Y. Jiao, Y.F. Zhang, J. Wang, H. Nishat, Y.X. Liu, W.N. Liu, H.X. Chen, S.M. Xiong, Characterization of externally solidified crystals in a high-pressure die-cast AlSi10MnMg alloy and their effect on porosities and mechanical properties, J. Mater. Process. Technol. 298 (2021) 117299.
DOI: 10.1016/j.jmatprotec.2021.117299
Google Scholar
[2]
A. Niklas, S. Orden, A. Bakedano, M. da Silva, E. Nogués, A.I. Fernández-Calvo, Effect of solution heat treatment on gas porosity and mechanical properties in a die cast step test part manufactured with a new AlSi10MnMg(Fe) secondary alloy, Mater. Sci. Eng. A 667 (2016) 376–382.
DOI: 10.1016/j.msea.2016.05.024
Google Scholar
[3]
C. Ahn, I. Jo, C. Ji, S. Cho, B. Mishra, E. Lee, Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy, Mater. Charact. 167 (2020) 110495.
DOI: 10.1016/j.matchar.2020.110495
Google Scholar
[4]
G. Timelli, A. Fabrizi, The Effects of Microstructure Heterogeneities and Casting Defects on the Mechanical Properties of High-Pressure Die-Cast AlSi9Cu3(Fe) Alloys, Metall. Mater. Trans. A 45 (2014) 5486–5498.
DOI: 10.1007/s11661-014-2515-7
Google Scholar
[5]
E. Lee, B. Mishra, Effect of Solidification Cooling Rate on Mechanical Properties and Microstructure of Al-Si-Mn-Mg Alloy, Mater. Trans. 58 (2017) 1624–1627.
DOI: 10.2320/matertrans.m2017170
Google Scholar
[6]
X.Y. Jiao, C.F. Liu, Z.P. Guo, H. Nishat, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S. Wiesner, S.M. Xiong, On the characterization of primary iron-rich phase in a high-pressure die-cast hypoeutectic Al-Si alloy, J. Alloys Compd. 862 (2021) 158580.
DOI: 10.1016/j.jallcom.2020.158580
Google Scholar
[7]
X. Dong, H. Youssef, X. Zhu, Y. Zhang, S. Wang, S. Ji, High as-cast strength die-cast AlSi9Cu2Mg alloy prepared by nanoparticle strengthening with industrially acceptable ductility, J Alloys Compd. 852 (2021) 156873.
DOI: 10.1016/j.jallcom.2020.156873
Google Scholar
[8]
P. Zhang, Z. Li, B. Liu, W. Ding, L. Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Mater. Sci. Eng. A 651 (2016) 376–390.
DOI: 10.1016/j.msea.2015.10.127
Google Scholar
[9]
H. Cao, Q. Sun, Q. Pu, L. Wang, M. Huang, Z. Luo, J. Che, Effect of vacuum degree and T6 treatment on the microstructure and mechanical properties of Al–Si–Cu alloy die castings, Vacuum 172 (2020) 109063.
DOI: 10.1016/j.vacuum.2019.109063
Google Scholar
[10]
Z. hao YUAN, Z. peng GUO, S. mei XIONG, Microstructure evolution of modified die-cast AlSi10MnMg alloy during solution treatment and its effect on mechanical properties, Trans. Nonferrous Met. Soc. China 29 (2019) 919–930.
DOI: 10.1016/s1003-6326(19)65001-6
Google Scholar
[11]
W. Yu, H. Zhao, L. Wang, Z. Guo, S. Xiong, The influence of T6 treatment on fracture behavior of hypereutectic Al-Si HPDC casting alloy, J Alloys Compd. 731 (2018) 444–451.
DOI: 10.1016/j.jallcom.2017.10.074
Google Scholar
[12]
Q. Li, F. Qiu, B.X. Dong, H.Y. Yang, S.L. Shu, M. Zha, Q.C. Jiang, Investigation of the influences of ternary Mg addition on the solidification microstructure and mechanical properties of as-cast Al–10Si alloys, Mater. Sci. Eng. A 798 (2020) 140247.
DOI: 10.1016/j.msea.2020.140247
Google Scholar
[13]
B.X. Dong, Q. Li, Z.F. Wang, T.S. Liu, H.Y. Yang, S.L. Shu, L.Y. Chen, F. Qiu, Q.C. Jiang, L.C. Zhang, Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution, Compos. B: Eng. 217 (2021) 108912.
DOI: 10.1016/j.compositesb.2021.108912
Google Scholar
[14]
X. Dong, Y. Zhang, S. Amirkhanlou, S. Ji, High performance gravity cast Al9Si0.45Mg0.4Cu alloy inoculated with AlB2 and TiB2, J. Mater. Process. Technol. 252 (2018) 604–611.
DOI: 10.1016/j.jmatprotec.2017.10.028
Google Scholar
[15]
X. Zhang, Y. Huang, Y. Liu, X. Ren, A systematic study of interface properties for L12-Al3Sc/Al based on the first-principles calculation, Results Phys. 19 (2020) 103378.
DOI: 10.1016/j.rinp.2020.103378
Google Scholar
[16]
M. Kim, Y. Hong, H. Cho, The effects of Sc on the microstructure and mechanical properties of hypo-eutectic Al-Si alloys, Met. Mater. Inter. 10 (2004) 513–520.
DOI: 10.1007/bf03027412
Google Scholar
[17]
J. V. Wood, P. Davies, J.L.F. Kellie, Properties of reactively cast aluminium–TiB2 alloys, Mater. Sci. Technol. 9 (1993) 833–840.
DOI: 10.1179/mst.1993.9.10.833
Google Scholar
[18]
Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part I: An improved halide salt route to fabricate Al–5 wt%TiB2 master composite, Mater. Sci. Eng. A 605 (2014) 301–309.
DOI: 10.1016/j.msea.2014.02.088
Google Scholar
[19]
T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part II: Enhancing the practical aluminum foundry alloys using the improved Al–5 wt%TiB2 master composite upon dilution, Mater. Sci. Eng. A 605 (2014) 22–32.
DOI: 10.1016/j.msea.2014.03.021
Google Scholar
[20]
Z. Chen, G.A. Sun, Y. Wu, M.H. Mathon, A. Borbely, D. Chen, G. Ji, M.L. Wang, S.Y. Zhong, H.W. Wang, Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites, Mater. Des. 116 (2017) 577–590.
DOI: 10.1016/j.matdes.2016.12.070
Google Scholar
[21]
S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng., R 29 (2000) 49–113.
Google Scholar
[22]
X. Wang, Additive Manufacturing Using Al-Cu-Mg-Sc-TiB2 Composite Powders to Overcome the Strength–Ductility Trade-Off, JOM 76 (2024) 71–83.
DOI: 10.1007/s11837-023-06048-2
Google Scholar
[23]
G. Sun, G. Zhao, L. Shao, X. Li, Y. Deng, H. Wang, Particle dispersion and mechanical properties enhancement of in-situ TiB2/7050 Al matrix composite via additive friction stir deposition, Mater. Lett. 357 (2024) 135790.
DOI: 10.1016/j.matlet.2023.135790
Google Scholar
[24]
C. Chen, C. Sun, W. Wang, M. Qi, W. Han, Y. Li, X. Liu, F. Yang, L. Guo, Z. Guo, Microstructure and mechanical properties of in-situ TiB2/AlSi7Mg composite via powder metallurgy and hot extrusion, J. Mater. Res. Technol. 19 (2022) 1282–1292.
DOI: 10.1016/j.jmrt.2022.05.117
Google Scholar
[25]
H. Chen, Z. Chen, Y. Cui, L. Wang, M. Wang, J. Liu, S. Zhong, H. Wang, The effect of TiB2 ceramic particles on Portevin–Le Chatelier behavior of TiB2/AlMg metal matrix composites, J. Mater. Res. Technol. 14 (2021) 2302–2311.
DOI: 10.1016/j.jmrt.2021.07.135
Google Scholar
[26]
Y. Li, S. Xi, G. Ma, Y. Xiao, L. Li, Z. Yuan, Y. He, R. Zhou, Y. Jiang, Understanding the influencing mechanism of sub-micron sized TiB2p on the microstructures and properties of rheological squeeze casting hypereutectic Al–Si alloys, J. Mater. Res. Technol. 14 (2021).
DOI: 10.1016/j.jmrt.2021.06.048
Google Scholar
[27]
K.L. Tee, L. Lu, M.O. Lai, In situ stir cast Al–TiB2 composite: processing and mechanical properties, Mater. Sci. Technol. 17 (2001) 201–206.
DOI: 10.1179/026708301101509863
Google Scholar
[28]
X. Dong, H. Youssef, Y. Zhang, S. Wang, S. Ji, High performance Al/TiB2 composites fabricated by nanoparticle reinforcement and cutting-edge super vacuum assisted die casting process, Compos. B: Eng. 177 (2019) 107453.
DOI: 10.1016/j.compositesb.2019.107453
Google Scholar
[29]
K. Wu, S. Ma, X. Fang, Y. Li, W. Kan, H. Wang, M. Wang, J. Liu, Z. Chen, Microstructure and mechanical properties of an in-situ TiB2 particle reinforced AlSi10Mg composite additive manufactured by selective electron beam melting, J. Mater. Sci. 58 (2023) 7915–7929.
DOI: 10.1007/s10853-023-08516-1
Google Scholar
[30]
B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, Int. Mater. Rev. 47 (2002) 3–29.
DOI: 10.1179/095066001225001049
Google Scholar
[31]
H.I. Laukli, C.M. Gourlay, A.K. Dahle, Migration of crystals during the filling of semi-solid castings, Metall. Mater. Trans. A 36 (2005) 805–818.
DOI: 10.1007/s11661-005-1011-5
Google Scholar
[32]
A. Bhowmik, D. Dey, A. Biswas, Comparative Study of Microstructure, Physical and Mechanical Characterization of SiC/TiB2 Reinforced Aluminium Matrix Composite, Silicon 13 (2021) 2003–2010.
DOI: 10.1007/s12633-020-00591-2
Google Scholar
[33]
D.F. Song, Y.L. Zhao, Z. Wang, Y.W. Jia, D.X. Li, Y.N. Fu, D.T. Zhang, W.W. Zhang, 3D Fe-Rich Phases Evolution and Its Effects on the Fracture Behavior of Al–7.0Si–1.2Fe Alloys by Mn Neutralization, Acta Metall. Sin. (Engl. Lett.) 35 (2022) 163–175.
DOI: 10.1007/s40195-021-01299-x
Google Scholar
[34]
Z. Niu, G. Liu, T. Li, S. Ji, Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings, J. Mater. Process. Technol. 303 (2022) 117525.
DOI: 10.1016/j.jmatprotec.2022.117525
Google Scholar
[35]
V. Andreyachshenko, Evolution of Al-Si-Mn-Fe aluminum alloy microstructure in the equal-channel angular pressing with back pressure, Mater. Lett. 254 (2019) 433–435.
DOI: 10.1016/j.matlet.2019.07.127
Google Scholar
[36]
P. Zhang, Z. Li, B. Liu, W. Ding, Tensile Properties and Deformation Behaviors of a New Aluminum Alloy for High Pressure Die Casting, J. Mater. Sci. Technol. 33 (2017) 367–378.
DOI: 10.1016/j.jmst.2016.02.013
Google Scholar
[37]
F. Chen, Z. Chen, F. Mao, T. Wang, Z. Cao, TiB2 reinforced aluminum based in situ composites fabricated by stir casting, Mater. Sci. Eng. A 625 (2015) 357–368.
DOI: 10.1016/j.msea.2014.12.033
Google Scholar
[38]
R.P. Elliott, F.A. Shunk, The Al-Sc (Aluminum-Scandium) system, Bull. Alloy Phase Diagrams 2 (1981) 222–223.
DOI: 10.1007/bf02881486
Google Scholar
[39]
C. Hu, H. Zhu, Y. Wang, C. Xia, J. Geng, D. Chen, H. Zhang, M. Wang, H. Wang, Microstructure features and mechanical properties of non-heat treated HPDC Al9Si0.6Mn–TiB2 alloys, J. Mater. Res. Technol. 27 (2023) 2117–2131.
DOI: 10.1016/j.jmrt.2023.10.060
Google Scholar
[40]
W. Jiang, Z. Fan, Y. Dai, C. Li, Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy, Mater. Sci. Eng. A 597 (2014) 237–244.
DOI: 10.1016/j.msea.2014.01.009
Google Scholar
[41]
L. Ceschini, A. Morri, A. Morri, A. Gamberini, S. Messieri, Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy, Mater. Des. 30 (2009) 4525–4531.
DOI: 10.1016/j.matdes.2009.05.012
Google Scholar
[42]
G. Niu, J. Wang, J. Li, J. Ye, J. Mao, The formation mechanism of the chill fine-grain layer with high supersaturation and its influence on the mechanical properties of die casting Al-7Si-0.5Mg alloy, Mater. Sci. Eng. A 833 (2022) 142544.
DOI: 10.1016/j.msea.2021.142544
Google Scholar
[43]
C.M. Gourlay, H.I. Laukli, A.K. Dahle, Segregation band formation in Al-Si die castings, Metall. Mater. Trans. A 35 A (2004) 2881–2891.
DOI: 10.1007/s11661-004-0236-z
Google Scholar
[44]
S.L. Pramod, A.K. Prasada Rao, B.S. Murty, S.R. Bakshi, Effect of Sc addition on the microstructure and wear properties of A356 alloy and A356–TiB2 in situ composite, Mater. Des. 78 (2015) 85–94.
DOI: 10.1016/j.matdes.2015.04.026
Google Scholar
[45]
Z. Lei, S. Wen, H. Huang, W. Wei, Z. Nie, Grain Refinement of Aluminum and Aluminum Alloys by Sc and Zr, Metals 13 (2023) 751.
DOI: 10.3390/met13040751
Google Scholar
[46]
R. Cao, Y. Zhao, X. Kai, W. Qian, L. Huang, C. Miao, Z. Xu, Effects of Sc on the microstructure and properties of in situ ZrB2/7085Al composites, Mater. Sci. Technol. 38 (2022) 794–803.
DOI: 10.1080/02670836.2022.2064408
Google Scholar
[47]
J.A. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys, Procedia Mater. Sci. 1 (2012) 19–33.
DOI: 10.1016/j.mspro.2012.06.004
Google Scholar
[48]
S.P. Xu, C.S. Shi, N.Q. Zhao, C.N. He, Microstructure and tensile properties of A356 alloy with different Sc/Zr additions, Rare Metals 40 (2021) 2514–2522.
DOI: 10.1007/s12598-020-01529-8
Google Scholar
[49]
D. Emadi, A.K. Prasada Rao, M. Mahfoud, Influence of scandium on the microstructure and mechanical properties of A319 alloy, Mater. Sci. Eng. A 527 (2010) 6123–6132.
DOI: 10.1016/j.msea.2010.06.042
Google Scholar
[50]
Q. Cai, C.L. Mendis, I.T.H. Chang, Z. Fan, Microstructure evolution and mechanical properties of new die-cast Al-Si-Mg-Mn alloys, Mater. Des. 187 (2020) 108394.
DOI: 10.1016/j.matdes.2019.108394
Google Scholar
[51]
B. Suárez-Peña, J. Asensio-Lozano, Microstructure and mechanical property developments in Al–12Si gravity die castings after Ti and/or Sr additions, Mater. Charact. 57 (2006) 218–226.
DOI: 10.1016/j.matchar.2006.01.015
Google Scholar
[52]
E. Lee, B. Mishra, Effect of Solidification Cooling Rate on Mechanical Properties and Microstructure of Al-Si-Mn-Mg Alloy, Mater. Trans. 58 (2017) 1624–1627.
DOI: 10.2320/matertrans.m2017170
Google Scholar
[53]
Y. Zhang, J.B. Patel, J. Lazaro-Nebreda, Z. Fan, Improved Defect Control and Mechanical Property Variation in High-Pressure Die Casting of A380 Alloy by High Shear Melt Conditioning, JOM 70 (2018) 2726–2730.
DOI: 10.1007/s11837-018-3005-y
Google Scholar
[54]
X. Dong, X. Zhu, S. Ji, Effect of super vacuum assisted high pressure die casting on the repeatability of mechanical properties of Al-Si-Mg-Mn die-cast alloys, J. Mater. Process. Technol. 266 (2019) 105–113.
DOI: 10.1016/j.jmatprotec.2018.10.030
Google Scholar