Modifying the Microstructure and Mechanical Properties of Non-Heat Treated HPDC AlSi10MnMg Foundry Alloy via Incorporation of TiB2 Particles and Sc

Article Preview

Abstract:

The demand for structural lightweight in a variety of industries, particularly the automobile industry, has driven the development of heat-free die-cast aluminum alloys with excellent properties. Utilizing lightweight materials, such as Al-Si alloys has several benefits, including higher overall performance in automobiles and other industries, increased heat resistance efficiency, decreased emissions, and reduced weight. The purpose of this study is to modify the microstructure and enhance the mechanical properties of high-pressure die-casting (HPDC) AlSi10MnMg foundry alloy by incorporation of TiB2 and Sc without any heat treatment. The results showed that the HPDC process significantly refines the grain structure and AlSiMnFe intermetallic compounds, transforming the eutectic morphology from sharp to rounded, and 93% enhancement in elongation at the optimum content (0.018 wt.%) of TiB2. While the hardness of the alloy was improved by 15.7% with the addition of 0.03wt.% TiB2. TiB2 incorporation refines the grain structure and AlSiMnFe phases, while depressing externally solidified crystals (ESCs). The HPDC process refines Al3Sc phases as well as AlSiMnFe phases while increasing yield strength due to Al3Sc strengthening effects. After 0.5wt.% Sc addition in 0.018wt.% TiB2-AlSi10MnMg alloy, the YS, and EL reached the maximum of 196MPa and 9.93% respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-122

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.Y. Jiao, Y.F. Zhang, J. Wang, H. Nishat, Y.X. Liu, W.N. Liu, H.X. Chen, S.M. Xiong, Characterization of externally solidified crystals in a high-pressure die-cast AlSi10MnMg alloy and their effect on porosities and mechanical properties, J. Mater. Process. Technol. 298 (2021) 117299.

DOI: 10.1016/j.jmatprotec.2021.117299

Google Scholar

[2] A. Niklas, S. Orden, A. Bakedano, M. da Silva, E. Nogués, A.I. Fernández-Calvo, Effect of solution heat treatment on gas porosity and mechanical properties in a die cast step test part manufactured with a new AlSi10MnMg(Fe) secondary alloy, Mater. Sci. Eng. A 667 (2016) 376–382.

DOI: 10.1016/j.msea.2016.05.024

Google Scholar

[3] C. Ahn, I. Jo, C. Ji, S. Cho, B. Mishra, E. Lee, Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy, Mater. Charact. 167 (2020) 110495.

DOI: 10.1016/j.matchar.2020.110495

Google Scholar

[4] G. Timelli, A. Fabrizi, The Effects of Microstructure Heterogeneities and Casting Defects on the Mechanical Properties of High-Pressure Die-Cast AlSi9Cu3(Fe) Alloys, Metall. Mater. Trans. A 45 (2014) 5486–5498.

DOI: 10.1007/s11661-014-2515-7

Google Scholar

[5] E. Lee, B. Mishra, Effect of Solidification Cooling Rate on Mechanical Properties and Microstructure of Al-Si-Mn-Mg Alloy, Mater. Trans. 58 (2017) 1624–1627.

DOI: 10.2320/matertrans.m2017170

Google Scholar

[6] X.Y. Jiao, C.F. Liu, Z.P. Guo, H. Nishat, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S. Wiesner, S.M. Xiong, On the characterization of primary iron-rich phase in a high-pressure die-cast hypoeutectic Al-Si alloy, J. Alloys Compd. 862 (2021) 158580.

DOI: 10.1016/j.jallcom.2020.158580

Google Scholar

[7] X. Dong, H. Youssef, X. Zhu, Y. Zhang, S. Wang, S. Ji, High as-cast strength die-cast AlSi9Cu2Mg alloy prepared by nanoparticle strengthening with industrially acceptable ductility, J Alloys Compd. 852 (2021) 156873.

DOI: 10.1016/j.jallcom.2020.156873

Google Scholar

[8] P. Zhang, Z. Li, B. Liu, W. Ding, L. Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Mater. Sci. Eng. A 651 (2016) 376–390.

DOI: 10.1016/j.msea.2015.10.127

Google Scholar

[9] H. Cao, Q. Sun, Q. Pu, L. Wang, M. Huang, Z. Luo, J. Che, Effect of vacuum degree and T6 treatment on the microstructure and mechanical properties of Al–Si–Cu alloy die castings, Vacuum 172 (2020) 109063.

DOI: 10.1016/j.vacuum.2019.109063

Google Scholar

[10] Z. hao YUAN, Z. peng GUO, S. mei XIONG, Microstructure evolution of modified die-cast AlSi10MnMg alloy during solution treatment and its effect on mechanical properties, Trans. Nonferrous Met. Soc. China 29 (2019) 919–930.

DOI: 10.1016/s1003-6326(19)65001-6

Google Scholar

[11] W. Yu, H. Zhao, L. Wang, Z. Guo, S. Xiong, The influence of T6 treatment on fracture behavior of hypereutectic Al-Si HPDC casting alloy, J Alloys Compd. 731 (2018) 444–451.

DOI: 10.1016/j.jallcom.2017.10.074

Google Scholar

[12] Q. Li, F. Qiu, B.X. Dong, H.Y. Yang, S.L. Shu, M. Zha, Q.C. Jiang, Investigation of the influences of ternary Mg addition on the solidification microstructure and mechanical properties of as-cast Al–10Si alloys, Mater. Sci. Eng. A 798 (2020) 140247.

DOI: 10.1016/j.msea.2020.140247

Google Scholar

[13] B.X. Dong, Q. Li, Z.F. Wang, T.S. Liu, H.Y. Yang, S.L. Shu, L.Y. Chen, F. Qiu, Q.C. Jiang, L.C. Zhang, Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution, Compos. B: Eng. 217 (2021) 108912.

DOI: 10.1016/j.compositesb.2021.108912

Google Scholar

[14] X. Dong, Y. Zhang, S. Amirkhanlou, S. Ji, High performance gravity cast Al9Si0.45Mg0.4Cu alloy inoculated with AlB2 and TiB2, J. Mater. Process. Technol. 252 (2018) 604–611.

DOI: 10.1016/j.jmatprotec.2017.10.028

Google Scholar

[15] X. Zhang, Y. Huang, Y. Liu, X. Ren, A systematic study of interface properties for L12-Al3Sc/Al based on the first-principles calculation, Results Phys. 19 (2020) 103378.

DOI: 10.1016/j.rinp.2020.103378

Google Scholar

[16] M. Kim, Y. Hong, H. Cho, The effects of Sc on the microstructure and mechanical properties of hypo-eutectic Al-Si alloys, Met. Mater. Inter. 10 (2004) 513–520.

DOI: 10.1007/bf03027412

Google Scholar

[17] J. V. Wood, P. Davies, J.L.F. Kellie, Properties of reactively cast aluminium–TiB2 alloys, Mater. Sci. Technol. 9 (1993) 833–840.

DOI: 10.1179/mst.1993.9.10.833

Google Scholar

[18] Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part I: An improved halide salt route to fabricate Al–5 wt%TiB2 master composite, Mater. Sci. Eng. A 605 (2014) 301–309.

DOI: 10.1016/j.msea.2014.02.088

Google Scholar

[19] T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part II: Enhancing the practical aluminum foundry alloys using the improved Al–5 wt%TiB2 master composite upon dilution, Mater. Sci. Eng. A 605 (2014) 22–32.

DOI: 10.1016/j.msea.2014.03.021

Google Scholar

[20] Z. Chen, G.A. Sun, Y. Wu, M.H. Mathon, A. Borbely, D. Chen, G. Ji, M.L. Wang, S.Y. Zhong, H.W. Wang, Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites, Mater. Des. 116 (2017) 577–590.

DOI: 10.1016/j.matdes.2016.12.070

Google Scholar

[21] S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng., R 29 (2000) 49–113.

Google Scholar

[22] X. Wang, Additive Manufacturing Using Al-Cu-Mg-Sc-TiB2 Composite Powders to Overcome the Strength–Ductility Trade-Off, JOM 76 (2024) 71–83.

DOI: 10.1007/s11837-023-06048-2

Google Scholar

[23] G. Sun, G. Zhao, L. Shao, X. Li, Y. Deng, H. Wang, Particle dispersion and mechanical properties enhancement of in-situ TiB2/7050 Al matrix composite via additive friction stir deposition, Mater. Lett. 357 (2024) 135790.

DOI: 10.1016/j.matlet.2023.135790

Google Scholar

[24] C. Chen, C. Sun, W. Wang, M. Qi, W. Han, Y. Li, X. Liu, F. Yang, L. Guo, Z. Guo, Microstructure and mechanical properties of in-situ TiB2/AlSi7Mg composite via powder metallurgy and hot extrusion, J. Mater. Res. Technol. 19 (2022) 1282–1292.

DOI: 10.1016/j.jmrt.2022.05.117

Google Scholar

[25] H. Chen, Z. Chen, Y. Cui, L. Wang, M. Wang, J. Liu, S. Zhong, H. Wang, The effect of TiB2 ceramic particles on Portevin–Le Chatelier behavior of TiB2/AlMg metal matrix composites, J. Mater. Res. Technol. 14 (2021) 2302–2311.

DOI: 10.1016/j.jmrt.2021.07.135

Google Scholar

[26] Y. Li, S. Xi, G. Ma, Y. Xiao, L. Li, Z. Yuan, Y. He, R. Zhou, Y. Jiang, Understanding the influencing mechanism of sub-micron sized TiB2p on the microstructures and properties of rheological squeeze casting hypereutectic Al–Si alloys, J. Mater. Res. Technol. 14 (2021).

DOI: 10.1016/j.jmrt.2021.06.048

Google Scholar

[27] K.L. Tee, L. Lu, M.O. Lai, In situ stir cast Al–TiB2 composite: processing and mechanical properties, Mater. Sci. Technol. 17 (2001) 201–206.

DOI: 10.1179/026708301101509863

Google Scholar

[28] X. Dong, H. Youssef, Y. Zhang, S. Wang, S. Ji, High performance Al/TiB2 composites fabricated by nanoparticle reinforcement and cutting-edge super vacuum assisted die casting process, Compos. B: Eng. 177 (2019) 107453.

DOI: 10.1016/j.compositesb.2019.107453

Google Scholar

[29] K. Wu, S. Ma, X. Fang, Y. Li, W. Kan, H. Wang, M. Wang, J. Liu, Z. Chen, Microstructure and mechanical properties of an in-situ TiB2 particle reinforced AlSi10Mg composite additive manufactured by selective electron beam melting, J. Mater. Sci. 58 (2023) 7915–7929.

DOI: 10.1007/s10853-023-08516-1

Google Scholar

[30] B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, Int. Mater. Rev. 47 (2002) 3–29.

DOI: 10.1179/095066001225001049

Google Scholar

[31] H.I. Laukli, C.M. Gourlay, A.K. Dahle, Migration of crystals during the filling of semi-solid castings, Metall. Mater. Trans. A 36 (2005) 805–818.

DOI: 10.1007/s11661-005-1011-5

Google Scholar

[32] A. Bhowmik, D. Dey, A. Biswas, Comparative Study of Microstructure, Physical and Mechanical Characterization of SiC/TiB2 Reinforced Aluminium Matrix Composite, Silicon 13 (2021) 2003–2010.

DOI: 10.1007/s12633-020-00591-2

Google Scholar

[33] D.F. Song, Y.L. Zhao, Z. Wang, Y.W. Jia, D.X. Li, Y.N. Fu, D.T. Zhang, W.W. Zhang, 3D Fe-Rich Phases Evolution and Its Effects on the Fracture Behavior of Al–7.0Si–1.2Fe Alloys by Mn Neutralization, Acta Metall. Sin. (Engl. Lett.) 35 (2022) 163–175.

DOI: 10.1007/s40195-021-01299-x

Google Scholar

[34] Z. Niu, G. Liu, T. Li, S. Ji, Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings, J. Mater. Process. Technol. 303 (2022) 117525.

DOI: 10.1016/j.jmatprotec.2022.117525

Google Scholar

[35] V. Andreyachshenko, Evolution of Al-Si-Mn-Fe aluminum alloy microstructure in the equal-channel angular pressing with back pressure, Mater. Lett. 254 (2019) 433–435.

DOI: 10.1016/j.matlet.2019.07.127

Google Scholar

[36] P. Zhang, Z. Li, B. Liu, W. Ding, Tensile Properties and Deformation Behaviors of a New Aluminum Alloy for High Pressure Die Casting, J. Mater. Sci. Technol. 33 (2017) 367–378.

DOI: 10.1016/j.jmst.2016.02.013

Google Scholar

[37] F. Chen, Z. Chen, F. Mao, T. Wang, Z. Cao, TiB2 reinforced aluminum based in situ composites fabricated by stir casting, Mater. Sci. Eng. A 625 (2015) 357–368.

DOI: 10.1016/j.msea.2014.12.033

Google Scholar

[38] R.P. Elliott, F.A. Shunk, The Al-Sc (Aluminum-Scandium) system, Bull. Alloy Phase Diagrams 2 (1981) 222–223.

DOI: 10.1007/bf02881486

Google Scholar

[39] C. Hu, H. Zhu, Y. Wang, C. Xia, J. Geng, D. Chen, H. Zhang, M. Wang, H. Wang, Microstructure features and mechanical properties of non-heat treated HPDC Al9Si0.6Mn–TiB2 alloys, J. Mater. Res. Technol. 27 (2023) 2117–2131.

DOI: 10.1016/j.jmrt.2023.10.060

Google Scholar

[40] W. Jiang, Z. Fan, Y. Dai, C. Li, Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy, Mater. Sci. Eng. A 597 (2014) 237–244.

DOI: 10.1016/j.msea.2014.01.009

Google Scholar

[41] L. Ceschini, A. Morri, A. Morri, A. Gamberini, S. Messieri, Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy, Mater. Des. 30 (2009) 4525–4531.

DOI: 10.1016/j.matdes.2009.05.012

Google Scholar

[42] G. Niu, J. Wang, J. Li, J. Ye, J. Mao, The formation mechanism of the chill fine-grain layer with high supersaturation and its influence on the mechanical properties of die casting Al-7Si-0.5Mg alloy, Mater. Sci. Eng. A 833 (2022) 142544.

DOI: 10.1016/j.msea.2021.142544

Google Scholar

[43] C.M. Gourlay, H.I. Laukli, A.K. Dahle, Segregation band formation in Al-Si die castings, Metall. Mater. Trans. A 35 A (2004) 2881–2891.

DOI: 10.1007/s11661-004-0236-z

Google Scholar

[44] S.L. Pramod, A.K. Prasada Rao, B.S. Murty, S.R. Bakshi, Effect of Sc addition on the microstructure and wear properties of A356 alloy and A356–TiB2 in situ composite, Mater. Des. 78 (2015) 85–94.

DOI: 10.1016/j.matdes.2015.04.026

Google Scholar

[45] Z. Lei, S. Wen, H. Huang, W. Wei, Z. Nie, Grain Refinement of Aluminum and Aluminum Alloys by Sc and Zr, Metals 13 (2023) 751.

DOI: 10.3390/met13040751

Google Scholar

[46] R. Cao, Y. Zhao, X. Kai, W. Qian, L. Huang, C. Miao, Z. Xu, Effects of Sc on the microstructure and properties of in situ ZrB2/7085Al composites, Mater. Sci. Technol. 38 (2022) 794–803.

DOI: 10.1080/02670836.2022.2064408

Google Scholar

[47] J.A. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys, Procedia Mater. Sci. 1 (2012) 19–33.

DOI: 10.1016/j.mspro.2012.06.004

Google Scholar

[48] S.P. Xu, C.S. Shi, N.Q. Zhao, C.N. He, Microstructure and tensile properties of A356 alloy with different Sc/Zr additions, Rare Metals 40 (2021) 2514–2522.

DOI: 10.1007/s12598-020-01529-8

Google Scholar

[49] D. Emadi, A.K. Prasada Rao, M. Mahfoud, Influence of scandium on the microstructure and mechanical properties of A319 alloy, Mater. Sci. Eng. A 527 (2010) 6123–6132.

DOI: 10.1016/j.msea.2010.06.042

Google Scholar

[50] Q. Cai, C.L. Mendis, I.T.H. Chang, Z. Fan, Microstructure evolution and mechanical properties of new die-cast Al-Si-Mg-Mn alloys, Mater. Des. 187 (2020) 108394.

DOI: 10.1016/j.matdes.2019.108394

Google Scholar

[51] B. Suárez-Peña, J. Asensio-Lozano, Microstructure and mechanical property developments in Al–12Si gravity die castings after Ti and/or Sr additions, Mater. Charact. 57 (2006) 218–226.

DOI: 10.1016/j.matchar.2006.01.015

Google Scholar

[52] E. Lee, B. Mishra, Effect of Solidification Cooling Rate on Mechanical Properties and Microstructure of Al-Si-Mn-Mg Alloy, Mater. Trans. 58 (2017) 1624–1627.

DOI: 10.2320/matertrans.m2017170

Google Scholar

[53] Y. Zhang, J.B. Patel, J. Lazaro-Nebreda, Z. Fan, Improved Defect Control and Mechanical Property Variation in High-Pressure Die Casting of A380 Alloy by High Shear Melt Conditioning, JOM 70 (2018) 2726–2730.

DOI: 10.1007/s11837-018-3005-y

Google Scholar

[54] X. Dong, X. Zhu, S. Ji, Effect of super vacuum assisted high pressure die casting on the repeatability of mechanical properties of Al-Si-Mg-Mn die-cast alloys, J. Mater. Process. Technol. 266 (2019) 105–113.

DOI: 10.1016/j.jmatprotec.2018.10.030

Google Scholar