[1]
P.Thakur, Gas Transport in underground coal mines, Inter. J. of Coal Geo. 208 428(2019)37-53.
Google Scholar
[2]
M.A.M. Buang, Dissertation, Study of PWHT microstructures and mechanical properties for mild steel and SA106B pipe material, Universiti Teknologi Petronas,Tronoh, Perak, 2010.
DOI: 10.29252/jafm.11.03.27173
Google Scholar
[3]
M.Alizadeh, M.Bordbar, Retracted: Applying a novel heat treatment cycle to modify the microstructure of welded API X70 pipeline steel, Mater. Lett. 98 (2013) 178-181.
DOI: 10.1016/j.matlet.2013.02.049
Google Scholar
[4]
S.H. Hashemi, Strength–hardness statistical correlation in API X65 steel. Mater.Scie.and Eng. A 5283(2011)1648-1655.
DOI: 10.1016/j.msea.2010.10.089
Google Scholar
[5]
M. Tamizi, M. Pouranvari, M. Movahedi, The role of HAZ softening on cross-tension mechanical performance of martensitic advanced high strength steel resistance spot welds, Metall.and Mater. Tran.A52 (2021) 655-667.
DOI: 10.1007/s11661-020-06104-5
Google Scholar
[6]
G.Khalaj, M .Jandaghi, Microalloyed steel welds by HF-ERW technique: Novel PWHT cycles, microstructure evolution and mechanical properties enhancement, Inter. J. of Pres. Ves. and Pip. 152 (2017) 15-26.
DOI: 10.1016/j.ijpvp.2017.04.003
Google Scholar
[7]
Z. Śloderbach, J.Pająk, Determination of ranges of components of heat affected zone including changes of structure, Arch. of Metall. and Mater. 60 (2015) 2608- 2612.
DOI: 10.1515/amm-2015-0421
Google Scholar
[8]
D.J. Abson, Y.Tkach, I. Hadley, V.S. Wright F.M. Burdekin, A review of postweld heat treatment code exemptions, Weld. J. 85 (2006) 63-69.
Google Scholar
[9]
I. Samardžić, A. Stoić, D. Kozak, I. Kladaric, M. Dunđer. Application of weld thermal cycle simulator in manufacturing engineering, J. of Manufac. and Indus.Eng.12 (2013) 7- 11.
DOI: 10.12776/mie.v12i1-2.177
Google Scholar
[10]
M.Dunder,T. Vuherer, I.Kladaric, Weldability Investigation of TStE 420 after Weld Thermal Cycle Simulation, Stroj. 52 (2010) 97-104.
Google Scholar
[11]
J.Górka,D.Janicki,M.Fidali, W.Jamrozik,.Thermographic assessment of the HAZ Properties and structure of thermomechanically treated steel, Inter.J.of Thermophys. 38 (2017)183, 1-21.
DOI: 10.1007/s10765-017-2320-9
Google Scholar
[12]
M. Turker, S.Yildiz, Fusion welding technique application of iron-based welding technique application of iron-based superalloys, In: National powder metallurgy conference, Ankara, Turkey, 1999, 549–56.
Google Scholar
[13]
S. Hamza, Z. Boumerzoug, E. Raouache, F. Delaunois, Simulated heat affected zone in welded stainless steel 304L. Act. Metall. Slova. 25 (2019) 142-149.
DOI: 10.12776/ams.v25i3.1290
Google Scholar
[14]
E. Raouache, Z. Boumerzoug, F. Delaunois, F. Khalfallah, Thermal cycle simulation of welding process in low carbon steel. Mate. Scie.and Eng. 13 (2011) 191- 195.
DOI: 10.1016/j.msea.2011.09.073
Google Scholar
[15]
M. St. Węglowski, S. Dymek , M. Kopyściański, J. Niagaj, J. Rykała, W. De Waele, S. Hertelé,A comprehensive study on the microstructure and mechanical properties of arc girth welded joints of spiral welded high strength API X70 steel pipe. Archives of Civil and Mechanical Engineering 20 (2020) 1-18.
DOI: 10.1007/s43452-020-00018-0
Google Scholar
[16]
D. Fajt, M. Ma´slak, M. Stankiewicz, P. Zajdel, K. Pa´ ncikiewicz, Influence of long-term subcritical annealing on the unalloyed steel welded joint microstructure, Materials 16 (2023) 1-12.
DOI: 10.3390/ma16010304
Google Scholar
[17]
Z. Boumerzoug, S. Cherif, Thermal cycle simulation of welding process in INC 738 LC Superalloy: Key Engineering Materials, 735 (2017) 75-79.
DOI: 10.4028/www.scientific.net/kem.735.75
Google Scholar
[18]
M. Nasiri Khalaji, R. Matin, R. Rahmani, M.R. Shabgard, Effect of input parameters on the depth heat affected zone (HAZ) AISI F13 steel electrical discharge machining process (EDM), The International Journal of Materials and Engineering Technology, 2, 2, (2019) 33-38.
Google Scholar