[1]
A. Shterenlikht, I.C. Howard, Cellular automata finite element (CAFE) modelling of transitional ductile-brittle fracture in steel, Proceedings of the 15th European Conference of Fracture ECF-15 (2015).
Google Scholar
[2]
S. Hewitta, L. Margettsa, A. Shterenlikht, A. Revell, A massively parallel multiscale CAFE framework for the modelling of fracture in heterogeneous materials under dynamic loading, Advances in Engineering Software (2019) 1-14.
DOI: 10.1016/j.advengsoft.2019.102737
Google Scholar
[3]
B. Tanguy, J. Besson, R. Piques, A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test Part II: modelling of the Charpy transition curve, Engineering Fracture Mechanics, 72 (2005).
DOI: 10.1016/j.engfracmech.2004.03.010
Google Scholar
[4]
A. Shterenlikht, L. Margetts, L. Cebamanos, Modelling fracture in heterogeneous material on HPC system using a hybrid MPI/Fortran coarray multi-scale CAFE framework, Advances in Engineering Software 125 (2018) 155-166.
DOI: 10.1016/j.advengsoft.2018.05.008
Google Scholar
[5]
L. Yang, A. Shterenlikht, X. Renc, J. Hea, Z. Zhang, CAFE based multi-scale modelling of ductile-to-brittle transition of steel with a temperature dependent effective surface energy, Materials Science & Engineering A. 755 (2019) 220-230.
DOI: 10.1016/j.msea.2019.04.012
Google Scholar
[6]
L. Yang, P. Sakari, R. Xiaobo, H. Jianying, K. Jukka, Z. Zhang, A multi-barrier model assisted CAFE method for predicting ductile-to-brittle transition with application to a low-carbon ultrahigh-strength steel, Mechanics of Materials 253 (2021) 103669.
DOI: 10.1016/j.mechmat.2020.103669
Google Scholar
[7]
A.G. Franklin, Comparison between a quantitave microscopic and chemical methods for assessment of nonmetallic inclusions, J. Iron and Steel Institute 207 (1969) 181-186.
Google Scholar
[8]
E. Smith, Cleavage fracture in mild steel, The International Journal of Fracture Mechanics, 4 (1968) 131-145.
Google Scholar
[9]
D.A. Curry, J.F. Knott, Effects of microstructure on cleavage fracture stress in steel, Metal Sci. 12 (1978) 511-514.
DOI: 10.1179/msc.1978.12.11.511
Google Scholar
[10]
Z. Liu, Cleavage fracture initiated by pearlite packets, Iron Steel (1982) 17-12.
Google Scholar
[11]
G. Rousselier, Finite deformation constitutive relations including ductile fracture damage, Three dimensional constitutive relations and ductile fracture, (edited by S. Nemat-Nasser), Amsterdam North-Holland (1981) 331-355.
DOI: 10.1016/b978-1-4832-8440-8.50105-8
Google Scholar
[12]
M.I.M. Ahmada, J.L. Curiel-Sosaa, S. Arund, J.A. Rongonga, An enhanced void-crack-based Rousselier damage model for ductile fracture with the XFEM, International Journal of Damage Mechanics 28 (2018) 1-30.
DOI: 10.1177/1056789518802624
Google Scholar
[13]
G. Rousselier, J.C. Devaux, G. Mottel, G. Devesa, A methodology of ductile fracture analysis based on damage mechanics: an illustration of a local approach of fracture, Nonlinear fracture mechanics ASTM STP 995 (1989) 332-354.
DOI: 10.1520/stp27716s
Google Scholar
[14]
F.D. Fischer, O. Kolednik, G.X. Shan, F.G. Rammerstorfer, A note on calibration of ductile failure damage indicators, International Journal of Fracture 73 (1995).
DOI: 10.1007/bf00027274
Google Scholar
[15]
G. Rousselier, Ductile fracture models and their potential in local approach of fracture, Nuclear Engineering and Design 105 (1986) 97-111.
DOI: 10.1016/0029-5493(87)90234-2
Google Scholar
[16]
G. Bernaur, W. Brocks, Micro-mechanical modelling of ductile damage and tearing - results of an European numerical round robin, Fatigue Fract. Engng. Mater. Struct. 25 (2001) 363-384.
DOI: 10.1046/j.1460-2695.2002.00468.x
Google Scholar
[17]
F. M. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metallurgical Transactions 14A (1983) 2277-2287.
DOI: 10.1007/bf02663302
Google Scholar
[18]
X. Gao, R.H. Dodds, R.L. Tregoning, J.A. Joyce, Weibull stress model for cleavage fracture under high-rate loading, Fatigue Fract. Engng. Mater. Struct. 24 (2001) 551-564.
DOI: 10.1046/j.1460-2695.2001.00421.x
Google Scholar
[19]
J. Nohava, J.P. Hausild, M. KarlaK, P. Bompard, Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel, Materials Characterization 49 (2002) 211-217.
DOI: 10.1016/s1044-5803(02)00360-1
Google Scholar
[20]
I.C. Howard, Z.H. Li, M.A. Sheikh, Modelling the ductile to cleavage transition in steels and structures, Fatigue and Fracture Mechanics ASTM STP 1360 (2000) 152-168.
DOI: 10.1520/stp13401s
Google Scholar
[21]
D. Bhattacharjee, C.L. Davies, Influence of processing history on mesotexture and microstructure-toughness relationship in controll-rolled and normalised steel, Scripta Materialia (2002) 825-831.
DOI: 10.1016/s1359-6462(02)00324-x
Google Scholar
[22]
F.J. Humphreys, M. Hatherly, Recrystallisation and related annealing phenomena, Second Ed. Elsevier Ltd., Oxford, UK, 628 (2004).
Google Scholar
[23]
R. Cuamatzi Meléndez, M. Melchor Salazar Martínez, S. Dionicio Bravo A. Ruiz Mendoza, Cleavage micromechanisms study in a ship plate steel through four-point double-notch bend and Charpy tests, Key Engineering Materials 944 (2022) 13-37.
DOI: 10.4028/p-mp2t05
Google Scholar
[24]
M.A. Zikry, M. Kao, Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries, Journal of the Mechanics and Physics of Solids 44 (1996) 1765-1798.
DOI: 10.1016/0022-5096(96)00049-x
Google Scholar
[25]
R. Cuamatzi-Meléndez, 3D cellular automata finite element modelling of ductile and cleavage fracture, Ph.D Thesis Department of Mechanical Engineering University of Sheffield (2008).
Google Scholar
[26]
A. Balasubramanian, L. Margetts, V. D. Vijayanand, M. Mostafavi, Statistical modelling of fracture using cellular automata finite element, Theoretical and Applied Fracture Mechanics 115 (2021) 103066.
DOI: 10.1016/j.tafmec.2021.103066
Google Scholar
[27]
S.J. Wu, J.F. Knott, On the statistical analysis of local fracture stresses in notched bars, Journal of the Mechanics and Physics of Solids 52 (2004) 907-924.
DOI: 10.1016/j.jmps.2003.07.005
Google Scholar
[28]
S.J. Wu, C.L. Davis, Investigation of the microstructure and mesotexture formed during thermomechanical controlled rolling in microalloyed steels, Journal of Microscopy 213 (2004) 262-272.
DOI: 10.1111/j.0022-2720.2004.01311.x
Google Scholar
[29]
B. Tanguy, J. Besson, A. Pineau, Comment on effect of carbide distribution on the fracture toughness in the transition temperature region of a SA 508 steel, Scripta Materialia 49 (2003) 191-197.
DOI: 10.1016/s1359-6462(03)00239-2
Google Scholar
[30]
J.F. Knott, Micromechanisms of fracture and the fracture toughness of engineering alloys, Fracture 1977 ICF4 Waterloo Canada (1977) 61-91.
Google Scholar
[31]
ISO 14556, Metallic materials - Charpy V-notch pendulum impact test, Instrumented test method (2015).
DOI: 10.3403/30289811
Google Scholar
[32]
H. Serizawa, Z. Wu, H. Murakawa, Computational analysis of Charpy impact tests using interface elements, Trans. JWRI 30 (2001) 97-102.
Google Scholar
[33]
L. Yang, A. Shterenlikht, X. Renc, J. Hea, Z. Zhanga, CAFE based multi-scale modelling of ductile-to-brittle transition of steel with a temperature dependent effective surface energy, Materials Science & Engineering A. 755 (2019) 220–230.
DOI: 10.1016/j.msea.2019.04.012
Google Scholar
[34]
S. Hewitt, L. Margetts, A. Shterenlikht, A. Revell, A massively parallel multiscale CAFE framework for the modelling of fracture in heterogeneous materials under dynamic loading, Advances in Engineering Software 139 (2020) 102737.
DOI: 10.1016/j.advengsoft.2019.102737
Google Scholar
[35]
L. Yang, P. Sakari, R. Xiaobo, H. Jianying, K. Jukka, Z. Zhang, A multi-barrier model assisted CAFE method for predicting ductile-to-brittle transition with application to a low-carbon ultrahigh-strength steel, Mechanics of Materials 152 (2021) 103669.
DOI: 10.1016/j.mechmat.2020.103669
Google Scholar
[36]
K. Teferra, D.J. Rowenhorst, Optimizing the cellular automata finite element model for additive manufacturing to simulate large microstructures, Acta Materialia (2021) 1-35.
DOI: 10.1016/j.actamat.2021.116930
Google Scholar
[37]
L.C. Pereira, J.C. Garcia de Blas, S. Griza, F.A. Ibrahim, Use of instrumented Charpy testing on the fracture toughness characterization of metallic materials, Tecnol. Metal. Mater. Min. 18 (2021).
DOI: 10.4322/2176-1523.20212469
Google Scholar
[38]
British Steel plc for the Health and Safety, Executive report (1997).
Google Scholar