Optimization of the Car Body Elements’ Stamping Process Based on the Strain Analysis

Article Preview

Abstract:

The extent of deformation in the process of forming body elements affects the amount of thinning of the shaped material, and consequently the possibility of material cohesion loss. In the tests, the size of deformation of the car body elements in the stamping process was determined according to the measurement of the displacement of the measurement points. A measuring grid was applied to the surface of the mat by electrochemical etching. The form with the applied measuring grid was drawing on the production line. Reference point displacement measurements were made with the use of an optical measuring system. The forming limit curve was determined for the CR4 grade steel sheet with a thickness of g = 0.75 mm. The deformation measurement results were related to the forming limit curve to identify the actual deformation level. The results of the deformation measurement allowed to indicate the place and scope of the correction of the shaping tools geometry and process parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-32

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Tatipala, J. Pilthammar, M. Sigvant, J. Wall, C.M. Johansson, Introductory study of sheet metal forming simulations to evaluate process robustness. Materials Science and Engineering. 418 (2018) 012111.

DOI: 10.1088/1757-899x/418/1/012111

Google Scholar

[2] J. Pilthammar, M. Sigvant, S. Kao-Walter, Introduction of elastic die deformations in sheet metal forming simulations. International Journal of Solids and Structures. 151 (2018) 76-90.

DOI: 10.1016/j.ijsolstr.2017.05.009

Google Scholar

[3] A. Weinschenk, W. Volk, Strategy to prevent surface deflections for automotive sheet metal parts. Journal of Physics. 896 (2017) 12058.

DOI: 10.1088/1742-6596/896/1/012058

Google Scholar

[4] M. Sigvant, J. Pilthammar, J. Hol, J.H. Wiebenga, T. Chezan, B. Carleer, T. van den Boogaard, Friction in sheet metal forming: influence of surface roughness and strain rate on sheet metal forming simulation results. Procedia Manufacturing. 29 (2019) 512-519.

DOI: 10.1016/j.promfg.2019.02.169

Google Scholar

[5] A. Zabala, E. Saenz de Argandona, D. Canizares, I. Llavori, N. Otegi, J. Mendiguren, Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness. Tribology International. 165 (2022) 107259.

DOI: 10.1016/j.triboint.2021.107259

Google Scholar

[6] T. Böhm, T. Meurer, Trajectory planning for a deep drawing tool. IFAC Proceedings Volumes. 47 (2014) 665-670.

DOI: 10.3182/20140824-6-za-1003.01565

Google Scholar

[7] A. Birkert, B. Hartmann, M. Scholle, M. Straub, Optimization of the process robustness of the stamping of complex body parts with regard to dimensional accuracy. Materials Science and Engineering. 418 (2018) 012107.

DOI: 10.1088/1757-899x/418/1/012107

Google Scholar

[8] Z. Marciniak, J.L. Duncan, S.J.Hu, Mechanics of Sheet Metal Forming. Butterworth-Heinemann, Oxford, U.K., 2002.

Google Scholar

[9] T. Altan, A.E. Takkaya, Sheet Metal Forming. Processes and Applications, ASM International, Ohio, USA, 2012, pp.51-82.

Google Scholar

[10] D. Banabic, Sheet Metal Forming Processes, Constitutive Modelling and Numerical Simulation, Spring, Berlin, Heidelberg, 2010, pp.27-212.

Google Scholar

[11] H.R. Bayat, S. Sarkar, B. Anantharamaiah, F. Italiano, A. Bach, S. Tharani, S. Wulfinghoff, S. Reese, Modeling of forming limit bands for strain-based failure-analysis of ultra-high-strength steels. Metals 8 (2018) 631.

DOI: 10.3390/met8080631

Google Scholar

[12] A.R. Chezan, T.V. Khandeparkar, C.H.L.J. ten Horn, M. Sigvant, Accurate sheet metal forming modeling for cost effective automotive part production. Materials Science and Engineering. 651 (2019) 012007.

DOI: 10.1088/1757-899x/651/1/012007

Google Scholar

[13] A. Cherouat, H. Borouchaki, Z. Jie, Simulation of sheet metal forming processes using a fully rheological-damage constitutive model coupling and a specific 3D remeshing method. Metals. 8 (2018) 991.

DOI: 10.3390/met8120991

Google Scholar

[14] D.M. Netoa, J. Coer, M.C. Oliveira, J.L. Alves, P.Y. Manach, L.F. Menezes, Numerical analysis on the elastic deformation of the tools in sheet metal forming processes. International Journal of Solids and Structures. 100-101 (2016) 270-285.

DOI: 10.1016/j.ijsolstr.2016.08.023

Google Scholar

[15] M. Kott, C. Erz, J. Heingartner, P. Groche, Controllability of temperature induced friction effects during deep drawing of car body parts with high drawing depths in series production. Procedia Manufacturing. 47 (2020) 553-60.

DOI: 10.1016/j.promfg.2020.04.166

Google Scholar

[16] B. Starman, G. Cafuta, N. Mole, A method for simultaneous optimization of blank shape and forming tool geometry in sheet metal forming simulations. Metals. 11 (2021) 544.

DOI: 10.3390/met11040544

Google Scholar

[17] A. Del Prete, T. Primo, Sheet metal forming optimization methodology for servo press process control improvement. Metals. 10 (2020) 271.

DOI: 10.3390/met10020271

Google Scholar

[18] E. Kaya, D. Farioli, M. Strano, FEA Approach for Wear and Damage Prediction of Tools for the Progressive Die Stamping of Steel Washers. Key Engineering Materials. 926 (2022) 1168-1177.

DOI: 10.4028/p-15186x

Google Scholar

[19] M. Strano, Q. Semeraro, M. Panzeri, A Method for Benchmarking of FEM Packages for Multi-Stage Sheet Metal Forming Simulations. Key Engineering Materials. 926 (2022) 2201-2210.

DOI: 10.4028/p-jpf626

Google Scholar

[20] A. Birkert, S. Haage, M. Strab, Umformtechnische herstellung komplexer karosserieteile. Spring: Berlin, Heidelberg, 2013.

DOI: 10.1007/978-3-662-46038-2

Google Scholar

[21] P. Essig, M. Liewaldb, C. Bolaya, Contact area evaluation of digitalized spotting images as a criterion for die tryout. Procedia Manufacturing. 47 (2020), 855-860.

DOI: 10.1016/j.promfg.2020.04.265

Google Scholar

[22] A. Zabala, I. Llavori, E. Saenz de Argandona, J. Mendiguren, Towards the automation of the die spotting process: Contact blue pattern decryption. Journal of Manufacturing Processes. 58 (2020) 1285-1296.

DOI: 10.1016/j.jmapro.2020.09.022

Google Scholar

[23] P. Essig, M. Liewald, J. Hol, Implementation of real contact areas into sheet metal forming simulations using digital spotting images. Materials Science and Engineering. 1157 (2021) 012025.

DOI: 10.1088/1757-899x/1157/1/012025

Google Scholar

[24] A. Rękas, T. Kaczmarek, M. Wieczorowski, B. Gapiński, M. Jakubowicz, K. Grochalski, D. Kucharski, L. Marciniak-Podsadna, Analysis of tool geometry for the stamping process of large-size car body components using a 3D optical measurement system. Materials 14 (2021) 7608.

DOI: 10.3390/ma14247608

Google Scholar

[25] B.Q. Shi, J. Liang, Circular grid pattern based surface strain measurement system for sheet metal forming. Optics and Lasers in Engineering. 50 (2012) 1186-1195.

DOI: 10.1016/j.optlaseng.2012.04.007

Google Scholar

[26] C.E. Garcia-Alcala, J.A. Padilla-Medina, J.I. Barranco-Gutierrez, Digital assisted image correlation for metal sheet strain measurement. Springer, 12088 (2020) 159-171.

Google Scholar

[27] P. Wankhede, N.G. Narayanaswamy, S. Kurra, A. Priyadarshini, SPSA: An image processing based software for single point strain analysis. Software Impacts. 15 (2023) 100484.

DOI: 10.1016/j.simpa.2023.100484

Google Scholar

[28] J. Slota, M. Jurcisin, I. Gajdos, E. Spisak, The sensitivity of a photogrammetric method in formability analysis. Acta mechanica et automatica. 7 (2013) 117-123.

DOI: 10.2478/ama-2013-0021

Google Scholar

[29] M. Schneiderc, H. Friebed, K. Galanulisd, Validation and optimization of numerical simulations by optical measurements of tools and parts. International Deep Drawing Research Group, IDDRG 2008 International Conference,16-18 June 2008, Olofström, Sweden.

Google Scholar

[30] H. Schmid, P. Hetz, M. Merklein, Failure behavior of different sheet metals after passing a drawbead. Procedia Manufacturing. 34 (2019) 125-132.

DOI: 10.1016/j.promfg.2019.06.129

Google Scholar

[31] D. Yao, Y. Duan, Y. Guan, S. Pu, A forward identification method for high-temperature stress-strain curves of 7075 aluminum alloy sheet considering the necking stage. Materials. 15 (2022) 7093.

DOI: 10.3390/ma15207093

Google Scholar

[32] E. Kunze, B. Schwarz, T. Weber, M. Muller, R. Bohm, M. Gude, Forming analysis of internal plies of multi-layer unidirectional textile preforms using projectional radiography. Procedia Manufacturing. 47 (2020) 17-23.

DOI: 10.1016/j.promfg.2020.04.110

Google Scholar

[33] S.P. Keeler, Determination of forming limits in automotive stampings. SAE Transactions. 74 (1965) 650535.

Google Scholar

[34] G.M. Goodwin, Application of strain analysis to sheet metal forming problems in the press shop. SAE Transactions. 77 (1968) 680093.

DOI: 10.4271/680093

Google Scholar

[35] D. Kohl, M. Merklein, Alternative characterization method for the failure behavior of sheet metals derived from Nakajima test. Materials Science and Engineering. 1157 (2021) 012046.

DOI: 10.1088/1757-899x/1157/1/012046

Google Scholar

[36] N. Ayachi, N. Guermazi, C.H. Pham, P.Y. Manach, Development of a Nakazima test suitable for determining the formability of ultra-thin copper sheets. Metals. 10 (2020) 1163.

DOI: 10.3390/met10091163

Google Scholar

[37] M.B. Puche, D. Palomo, A.J. Martínez-Donaire, D. Morales-Palma, C. Vallellano, Ductile Fracture Analysis in Nakazima vs. SPIF Tests. Advances in Science and Technology. 132 (2023) 99-105.

DOI: 10.4028/p-pszvo6

Google Scholar

[38] D. Palomo, A.J. Martínez-Donaire, M.B. Puche, C. Vallellano, Analysis of the Temperature Evolution at Necking during Tensile Deformation of H240LA Steel Sheets. Key Engineering Materials. 959 (2023) 109-118.

DOI: 10.4028/p-dh7fbf

Google Scholar

[39] C. Zhang, F. Xie, Y. Yang, Y. Wang, Identification of modified Swift constitutive model and its application in predicting FLDs of AA5083 at elevated temperatures. Procedia Manufacturing. 15 (2018) 1142-1148.

DOI: 10.1016/j.promfg.2018.07.376

Google Scholar

[40] S.S. Karganroudi, S. Shojaei, R. Hashemi, D. Rahmatabadi, S. Jamalian, A. Aminzadeh, H. Ibrahim, Insight into the influence of punch velocity and thickness on forming limit diagrams of AA 6061 sheets-numerical and experimental analyses. Metals. 11 (2021) 2010.

DOI: 10.3390/met11122010

Google Scholar

[41] ARGUS Optical Solution for Forming Analysis, https://www.gom.com/en/products/3d-testing/argus

Google Scholar