[1]
S. Tatipala, J. Pilthammar, M. Sigvant, J. Wall, C.M. Johansson, Introductory study of sheet metal forming simulations to evaluate process robustness. Materials Science and Engineering. 418 (2018) 012111.
DOI: 10.1088/1757-899x/418/1/012111
Google Scholar
[2]
J. Pilthammar, M. Sigvant, S. Kao-Walter, Introduction of elastic die deformations in sheet metal forming simulations. International Journal of Solids and Structures. 151 (2018) 76-90.
DOI: 10.1016/j.ijsolstr.2017.05.009
Google Scholar
[3]
A. Weinschenk, W. Volk, Strategy to prevent surface deflections for automotive sheet metal parts. Journal of Physics. 896 (2017) 12058.
DOI: 10.1088/1742-6596/896/1/012058
Google Scholar
[4]
M. Sigvant, J. Pilthammar, J. Hol, J.H. Wiebenga, T. Chezan, B. Carleer, T. van den Boogaard, Friction in sheet metal forming: influence of surface roughness and strain rate on sheet metal forming simulation results. Procedia Manufacturing. 29 (2019) 512-519.
DOI: 10.1016/j.promfg.2019.02.169
Google Scholar
[5]
A. Zabala, E. Saenz de Argandona, D. Canizares, I. Llavori, N. Otegi, J. Mendiguren, Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness. Tribology International. 165 (2022) 107259.
DOI: 10.1016/j.triboint.2021.107259
Google Scholar
[6]
T. Böhm, T. Meurer, Trajectory planning for a deep drawing tool. IFAC Proceedings Volumes. 47 (2014) 665-670.
DOI: 10.3182/20140824-6-za-1003.01565
Google Scholar
[7]
A. Birkert, B. Hartmann, M. Scholle, M. Straub, Optimization of the process robustness of the stamping of complex body parts with regard to dimensional accuracy. Materials Science and Engineering. 418 (2018) 012107.
DOI: 10.1088/1757-899x/418/1/012107
Google Scholar
[8]
Z. Marciniak, J.L. Duncan, S.J.Hu, Mechanics of Sheet Metal Forming. Butterworth-Heinemann, Oxford, U.K., 2002.
Google Scholar
[9]
T. Altan, A.E. Takkaya, Sheet Metal Forming. Processes and Applications, ASM International, Ohio, USA, 2012, pp.51-82.
Google Scholar
[10]
D. Banabic, Sheet Metal Forming Processes, Constitutive Modelling and Numerical Simulation, Spring, Berlin, Heidelberg, 2010, pp.27-212.
Google Scholar
[11]
H.R. Bayat, S. Sarkar, B. Anantharamaiah, F. Italiano, A. Bach, S. Tharani, S. Wulfinghoff, S. Reese, Modeling of forming limit bands for strain-based failure-analysis of ultra-high-strength steels. Metals 8 (2018) 631.
DOI: 10.3390/met8080631
Google Scholar
[12]
A.R. Chezan, T.V. Khandeparkar, C.H.L.J. ten Horn, M. Sigvant, Accurate sheet metal forming modeling for cost effective automotive part production. Materials Science and Engineering. 651 (2019) 012007.
DOI: 10.1088/1757-899x/651/1/012007
Google Scholar
[13]
A. Cherouat, H. Borouchaki, Z. Jie, Simulation of sheet metal forming processes using a fully rheological-damage constitutive model coupling and a specific 3D remeshing method. Metals. 8 (2018) 991.
DOI: 10.3390/met8120991
Google Scholar
[14]
D.M. Netoa, J. Coer, M.C. Oliveira, J.L. Alves, P.Y. Manach, L.F. Menezes, Numerical analysis on the elastic deformation of the tools in sheet metal forming processes. International Journal of Solids and Structures. 100-101 (2016) 270-285.
DOI: 10.1016/j.ijsolstr.2016.08.023
Google Scholar
[15]
M. Kott, C. Erz, J. Heingartner, P. Groche, Controllability of temperature induced friction effects during deep drawing of car body parts with high drawing depths in series production. Procedia Manufacturing. 47 (2020) 553-60.
DOI: 10.1016/j.promfg.2020.04.166
Google Scholar
[16]
B. Starman, G. Cafuta, N. Mole, A method for simultaneous optimization of blank shape and forming tool geometry in sheet metal forming simulations. Metals. 11 (2021) 544.
DOI: 10.3390/met11040544
Google Scholar
[17]
A. Del Prete, T. Primo, Sheet metal forming optimization methodology for servo press process control improvement. Metals. 10 (2020) 271.
DOI: 10.3390/met10020271
Google Scholar
[18]
E. Kaya, D. Farioli, M. Strano, FEA Approach for Wear and Damage Prediction of Tools for the Progressive Die Stamping of Steel Washers. Key Engineering Materials. 926 (2022) 1168-1177.
DOI: 10.4028/p-15186x
Google Scholar
[19]
M. Strano, Q. Semeraro, M. Panzeri, A Method for Benchmarking of FEM Packages for Multi-Stage Sheet Metal Forming Simulations. Key Engineering Materials. 926 (2022) 2201-2210.
DOI: 10.4028/p-jpf626
Google Scholar
[20]
A. Birkert, S. Haage, M. Strab, Umformtechnische herstellung komplexer karosserieteile. Spring: Berlin, Heidelberg, 2013.
DOI: 10.1007/978-3-662-46038-2
Google Scholar
[21]
P. Essig, M. Liewaldb, C. Bolaya, Contact area evaluation of digitalized spotting images as a criterion for die tryout. Procedia Manufacturing. 47 (2020), 855-860.
DOI: 10.1016/j.promfg.2020.04.265
Google Scholar
[22]
A. Zabala, I. Llavori, E. Saenz de Argandona, J. Mendiguren, Towards the automation of the die spotting process: Contact blue pattern decryption. Journal of Manufacturing Processes. 58 (2020) 1285-1296.
DOI: 10.1016/j.jmapro.2020.09.022
Google Scholar
[23]
P. Essig, M. Liewald, J. Hol, Implementation of real contact areas into sheet metal forming simulations using digital spotting images. Materials Science and Engineering. 1157 (2021) 012025.
DOI: 10.1088/1757-899x/1157/1/012025
Google Scholar
[24]
A. Rękas, T. Kaczmarek, M. Wieczorowski, B. Gapiński, M. Jakubowicz, K. Grochalski, D. Kucharski, L. Marciniak-Podsadna, Analysis of tool geometry for the stamping process of large-size car body components using a 3D optical measurement system. Materials 14 (2021) 7608.
DOI: 10.3390/ma14247608
Google Scholar
[25]
B.Q. Shi, J. Liang, Circular grid pattern based surface strain measurement system for sheet metal forming. Optics and Lasers in Engineering. 50 (2012) 1186-1195.
DOI: 10.1016/j.optlaseng.2012.04.007
Google Scholar
[26]
C.E. Garcia-Alcala, J.A. Padilla-Medina, J.I. Barranco-Gutierrez, Digital assisted image correlation for metal sheet strain measurement. Springer, 12088 (2020) 159-171.
Google Scholar
[27]
P. Wankhede, N.G. Narayanaswamy, S. Kurra, A. Priyadarshini, SPSA: An image processing based software for single point strain analysis. Software Impacts. 15 (2023) 100484.
DOI: 10.1016/j.simpa.2023.100484
Google Scholar
[28]
J. Slota, M. Jurcisin, I. Gajdos, E. Spisak, The sensitivity of a photogrammetric method in formability analysis. Acta mechanica et automatica. 7 (2013) 117-123.
DOI: 10.2478/ama-2013-0021
Google Scholar
[29]
M. Schneiderc, H. Friebed, K. Galanulisd, Validation and optimization of numerical simulations by optical measurements of tools and parts. International Deep Drawing Research Group, IDDRG 2008 International Conference,16-18 June 2008, Olofström, Sweden.
Google Scholar
[30]
H. Schmid, P. Hetz, M. Merklein, Failure behavior of different sheet metals after passing a drawbead. Procedia Manufacturing. 34 (2019) 125-132.
DOI: 10.1016/j.promfg.2019.06.129
Google Scholar
[31]
D. Yao, Y. Duan, Y. Guan, S. Pu, A forward identification method for high-temperature stress-strain curves of 7075 aluminum alloy sheet considering the necking stage. Materials. 15 (2022) 7093.
DOI: 10.3390/ma15207093
Google Scholar
[32]
E. Kunze, B. Schwarz, T. Weber, M. Muller, R. Bohm, M. Gude, Forming analysis of internal plies of multi-layer unidirectional textile preforms using projectional radiography. Procedia Manufacturing. 47 (2020) 17-23.
DOI: 10.1016/j.promfg.2020.04.110
Google Scholar
[33]
S.P. Keeler, Determination of forming limits in automotive stampings. SAE Transactions. 74 (1965) 650535.
Google Scholar
[34]
G.M. Goodwin, Application of strain analysis to sheet metal forming problems in the press shop. SAE Transactions. 77 (1968) 680093.
DOI: 10.4271/680093
Google Scholar
[35]
D. Kohl, M. Merklein, Alternative characterization method for the failure behavior of sheet metals derived from Nakajima test. Materials Science and Engineering. 1157 (2021) 012046.
DOI: 10.1088/1757-899x/1157/1/012046
Google Scholar
[36]
N. Ayachi, N. Guermazi, C.H. Pham, P.Y. Manach, Development of a Nakazima test suitable for determining the formability of ultra-thin copper sheets. Metals. 10 (2020) 1163.
DOI: 10.3390/met10091163
Google Scholar
[37]
M.B. Puche, D. Palomo, A.J. Martínez-Donaire, D. Morales-Palma, C. Vallellano, Ductile Fracture Analysis in Nakazima vs. SPIF Tests. Advances in Science and Technology. 132 (2023) 99-105.
DOI: 10.4028/p-pszvo6
Google Scholar
[38]
D. Palomo, A.J. Martínez-Donaire, M.B. Puche, C. Vallellano, Analysis of the Temperature Evolution at Necking during Tensile Deformation of H240LA Steel Sheets. Key Engineering Materials. 959 (2023) 109-118.
DOI: 10.4028/p-dh7fbf
Google Scholar
[39]
C. Zhang, F. Xie, Y. Yang, Y. Wang, Identification of modified Swift constitutive model and its application in predicting FLDs of AA5083 at elevated temperatures. Procedia Manufacturing. 15 (2018) 1142-1148.
DOI: 10.1016/j.promfg.2018.07.376
Google Scholar
[40]
S.S. Karganroudi, S. Shojaei, R. Hashemi, D. Rahmatabadi, S. Jamalian, A. Aminzadeh, H. Ibrahim, Insight into the influence of punch velocity and thickness on forming limit diagrams of AA 6061 sheets-numerical and experimental analyses. Metals. 11 (2021) 2010.
DOI: 10.3390/met11122010
Google Scholar
[41]
ARGUS Optical Solution for Forming Analysis, https://www.gom.com/en/products/3d-testing/argus
Google Scholar