Microstructural Characterization, Mechanical Performance, and Anti-Corrosive Response of Zinc Multifaceted Coating on Mild Steel

Article Preview

Abstract:

Zinc has attracted significant attention in research due to its cost-effective use as an electrodeposited material, effectively protecting various types of steel from corrosion and wear. However, despite its advantages, zinc has limitations in fully guarding steel against corrosion. Recent studies propose that blending zinc with other metals during the coating process can proficiently shield mild steel from deterioration. The motivation for this study stems from recognizing the restrictions of zinc electrodeposition and the limited exploration of zinc multi-facet composite coatings for mild steel. In this study, the electrodeposition technique was employed to apply a coating to mild steel using zinc and nanoparticles of calcium oxide (CaO) and manganese oxide (MnO2). The coating bath's chemical composition included mass variations of 0-12 g/L for CaO and MnO2, along with 10 g/L each of boric acid, thiourea, and Na2SO4, and 15 g/L of K2SO4 and ZnSO4. The coating process occurred over a twenty-minute period, with a pH of 4.8, voltage set at 3.2V, current density at 1 A/cm2, temperature at 47°C, and stirring rate at 200 rpm. Results obtained from the coated mild steel demonstrated that Zn-6CaO-6MnO2 exhibited the greatest coating thickness at 0.2308 mm, and it showcased impressive corrosion resistance at 2.0618 mm/year. The Zn-CaO-MnO2 coating displayed a substantial deposit of crystallites in its microstructure, assisted by the presence of manganese, contributing to a smoother surface texture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-14

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. P. Abioye, A. J. Musa, C. A. Loto, O. S. I. Fayomi, and G. P. Gaiya, "Evaluation of Corrosive Behavior of Zinc Composite Coating on Mild Steel for Marine Applications," J. Phys. Conf. Ser., vol. 1378, no. 4, 2019.

DOI: 10.1088/1742-6596/1378/4/042051

Google Scholar

[2] M. J. Rahman, S. R. Sen, M. Moniruzzaman, and K. M. Shorowordi, "Morphology and properties of electrodeposited Zn-Ni alloy coatings on mild steel," J. Mech. Eng., vol. 40, no. 1, p.9–14, 2009.

DOI: 10.3329/jme.v40i1.3468

Google Scholar

[3] I. H. Karahan, & H. S. Güder, (2009). Electrodeposition and properties of Zn, Zn–Ni, Zn–Fe and Zn–Fe–Ni alloys from acidic chloride–sulphate electrolytes. Transactions of the IMF, 87(3), 155-158.

DOI: 10.1179/174591909x438875

Google Scholar

[4] N. C. Hosking, M. A. Ström, P. H. Shipway, and C. D. Rudd, "Corrosion resistance of zinc–magnesium coated steel," Corros. Sci., vol. 49, no. 9, p.3669–3695, 2007.

DOI: 10.1016/j.corsci.2007.03.032

Google Scholar

[5] C. N. Panagopoulos, E. P. Georgiou, P. E. Agathocleous, & K. I. Giannakopoulos, (2009). Mechanical behaviour of Zn–Fe alloy coated mild steel. Materials & Design, 30(10), 4267-4272.

DOI: 10.1016/j.matdes.2009.04.026

Google Scholar

[6] J. D. Brassard, D. K. Sarkar, J. Perron, A. Audibert-Hayet, and D. Melot, "Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion," J. Colloid Interface Sci., vol. 447, p.240–247, 2015.

DOI: 10.1016/j.jcis.2014.11.076

Google Scholar

[7] N. A. Polyakov, I. G. Botryakova, V. G. Glukhov, G. V Red'kina, and Y. I. Kuznetsov, "Formation and anticorrosion properties of superhydrophobic zinc coatings on steel," Chem. Eng. J., vol. 421, p.127775, 2021.

DOI: 10.1016/j.cej.2020.127775

Google Scholar

[8] P. G. Salom, "The metallurgy of steel," J. Franklin Inst., vol. 120, no. 3, 2000.

DOI: 10.1016/0016-0032(85)90312-6

Google Scholar

[9] R. P. Edavan and R. Kopinski, "Corrosion resistance of painted zinc alloy coated steels," Corros. Sci., vol. 51, no. 10, p.2429–2442, 2009.

DOI: 10.1016/j.corsci.2009.06.028

Google Scholar

[10] S. M. A. Shibli, B. N. Meena, and R. Remya, "A review on recent approaches in the field of hot dip zinc galvanizing process," Surf. Coatings Technol., vol. 262, p.210–215, 2015.

DOI: 10.1016/j.surfcoat.2014.12.054

Google Scholar

[11] N. Loukil and M. Feki, "Zn–Mn electrodeposition: a literature review," J. Electrochem. Soc., vol. 167, no. 2, p.22503, 2020.

DOI: 10.1149/1945-7111/ab6160

Google Scholar

[12] K. K. Maniam and S. Paul, "Progress in electrodeposition of zinc and zinc nickel alloys using ionic liquids," Appl. Sci., vol. 10, no. 15, p.5321, 2020.

DOI: 10.3390/app10155321

Google Scholar

[13] A. Lelevic and F. C. Walsh, "Electrodeposition of NiP alloy coatings: a review," Surf. Coatings Technol., vol. 369, p.198–220, 2019.

DOI: 10.1016/j.surfcoat.2019.03.055

Google Scholar

[14] O. P. Abioye, A. J. Musa, C. A. Loto, O. S. I. Fayomi, and G. P. Gaiya, "Evaluation of corrosive behavior of zinc composite coating on mild steel for marine applications," in Journal of Physics: Conference Series, 2019, vol. 1378, no. 4, p.42051.

DOI: 10.1088/1742-6596/1378/4/042051

Google Scholar

[15] A. Kumar and D. P. Sammaiah, "Influence of process parameters on mechanical and metallurgical properties of zinc coating on mild steel during mechanical process," Curr. Res. Top. poweer, Nucl. Fuel Energy, SP-CRTPNFE, no. 2016, 2017.

DOI: 10.1016/j.matpr.2017.11.640

Google Scholar

[16] D. T. Oloruntoba, O. O. Oluwole, & E. O. Oguntade, (2009). Comparative study of corrosion behaviour of galvanized steel and coated Al 3103 roofing sheets in carbonate and chloride environments. Materials & Design, 30(4), 1371-1376.

DOI: 10.1016/j.matdes.2008.06.005

Google Scholar

[17] S. G. Croll, "Surface roughness profile and its effect on coating adhesion and corrosion protection: A review," Prog. Org. Coatings, vol. 148, p.105847, 2020.

DOI: 10.1016/j.porgcoat.2020.105847

Google Scholar

[18] V. Kumar and K. Balasubramanian, "Progress update on failure mechanisms of advanced thermal barrier coatings: A review," Prog. Org. Coatings, vol. 90, p.54–82, 2016.

DOI: 10.1016/j.porgcoat.2015.09.019

Google Scholar

[19] I. G. Akande, O. S. I. Fayomi, and B. J. Akpan, "Development of UPP nanoparticles reinforced Zn–ZnO–MgO composite coating for corrosion-resistance, hardness, and microstructure property enhancement of AISI 1015 carbon steel for automotive and marine applications," Int. J. Adv. Manuf. Technol., vol. 123, no. 3–4, p.999–1008, 2022.

DOI: 10.1007/s00170-022-10222-2

Google Scholar

[20] X. Wang, J. Pan, Q. Li, X. Dong, L. Shi, and S. Chang, "Preparation, Corrosion Resistance, and Electrochemical Properties of MnO2/TiO2 Coating on Porous Titanium," Coatings, vol. 12, no. 10, p.1381, 2022.

DOI: 10.3390/coatings12101381

Google Scholar

[21] D. T. Ruppel, S. C. Dexter, and G. W. Luther, "Role of manganese dioxide in corrosion in the presence of natural biofilms," Corrosion, vol. 57, no. 10, 2001.

DOI: 10.5006/1.3290313

Google Scholar

[22] A. Domenech-Carbo, M. A. P. Ronda, J. Vives-Ferrandiz, G. S. Duffo, S. Farina, and M. T. Domenech-Carbo, "Modeling 'dry'OCP measurements to characterize archaeological iron corrosion I: long-time transients," J. Electroanal. Chem., vol. 913, p.116210, 2022.

DOI: 10.1016/j.jelechem.2022.116210

Google Scholar

[23] O. D. Akinfenwa, O. S. I. Fayomi, J. O. Atiba, and B. E. Anyaegbuna, "Chemical and microstructural investigation of starch modified zinc oxide paired as a composite superhydrophobic coating for mild steel protection," Chem. Pap., no. 0123456789, 2023.

DOI: 10.1007/s11696-023-03091-w

Google Scholar

[24] K. Charoenkitamorn, P. T. Tue, K. Kawai, O. Chailapakul, and Y. Takamura, "Electrochemical immunoassay using open circuit potential detection labeled by platinum nanoparticles," Sensors, vol. 18, no. 2, p.444, 2018.

DOI: 10.3390/s18020444

Google Scholar

[25] T. A. Hemkemeier, F. C. R. Almeida, A. Sales, and A. J. Klemm, "Corrosion monitoring by open circuit potential in steel reinforcements embedded in cementitious composites with industrial wastes," Case Stud. Constr. Mater., vol. 16, p. e01042, 2022.

DOI: 10.1016/j.cscm.2022.e01042

Google Scholar

[26] B. Yazıcılar, F. Böke, A. Alaylı, H. Nadaroglu, S. Gedikli, and I. Bezirganoglu, "In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress," Plant Cell Rep., vol. 40, p.29–42, 2021.

DOI: 10.1007/s00299-020-02613-0

Google Scholar

[27] M. Liu et al., "Effect of microstructure and crystallography on sulfide stress cracking in API-5CT-C110 casing steel," Mater. Sci. Eng. A, vol. 671, p.244–253, 2016.

DOI: 10.1016/j.msea.2016.06.034

Google Scholar

[28] A. Datta, U. Ramamurty, S. Ranganathan, and U. V Waghmare, "Crystal structures of a Mg–Zn–Y alloy: A first-principles study," Comput. Mater. Sci., vol. 37, no. 1–2, p.69–73, 2006.

DOI: 10.1016/j.commatsci.2005.12.020

Google Scholar

[29] M.K. Kolle, S. Shajahan, and A. Basu, "Effect of electrodeposition current and pulse parameter on surface mechanical and electrochemical behavior of Ni–W alloy coatings," Metall. Mater. Trans. A, vol. 51, p.3721–3731, 2020.

DOI: 10.1007/s11661-020-05787-0

Google Scholar

[30] Y. Liu et al., "Structure–Performance evolution mechanism of the wear failure process of coated spherical plain bearings," Eng. Fail. Anal., vol. 135, p.106097, 2022.

DOI: 10.1016/j.engfailanal.2022.106097

Google Scholar