[1]
O. P. Abioye, A. J. Musa, C. A. Loto, O. S. I. Fayomi, and G. P. Gaiya, "Evaluation of Corrosive Behavior of Zinc Composite Coating on Mild Steel for Marine Applications," J. Phys. Conf. Ser., vol. 1378, no. 4, 2019.
DOI: 10.1088/1742-6596/1378/4/042051
Google Scholar
[2]
M. J. Rahman, S. R. Sen, M. Moniruzzaman, and K. M. Shorowordi, "Morphology and properties of electrodeposited Zn-Ni alloy coatings on mild steel," J. Mech. Eng., vol. 40, no. 1, p.9–14, 2009.
DOI: 10.3329/jme.v40i1.3468
Google Scholar
[3]
I. H. Karahan, & H. S. Güder, (2009). Electrodeposition and properties of Zn, Zn–Ni, Zn–Fe and Zn–Fe–Ni alloys from acidic chloride–sulphate electrolytes. Transactions of the IMF, 87(3), 155-158.
DOI: 10.1179/174591909x438875
Google Scholar
[4]
N. C. Hosking, M. A. Ström, P. H. Shipway, and C. D. Rudd, "Corrosion resistance of zinc–magnesium coated steel," Corros. Sci., vol. 49, no. 9, p.3669–3695, 2007.
DOI: 10.1016/j.corsci.2007.03.032
Google Scholar
[5]
C. N. Panagopoulos, E. P. Georgiou, P. E. Agathocleous, & K. I. Giannakopoulos, (2009). Mechanical behaviour of Zn–Fe alloy coated mild steel. Materials & Design, 30(10), 4267-4272.
DOI: 10.1016/j.matdes.2009.04.026
Google Scholar
[6]
J. D. Brassard, D. K. Sarkar, J. Perron, A. Audibert-Hayet, and D. Melot, "Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion," J. Colloid Interface Sci., vol. 447, p.240–247, 2015.
DOI: 10.1016/j.jcis.2014.11.076
Google Scholar
[7]
N. A. Polyakov, I. G. Botryakova, V. G. Glukhov, G. V Red'kina, and Y. I. Kuznetsov, "Formation and anticorrosion properties of superhydrophobic zinc coatings on steel," Chem. Eng. J., vol. 421, p.127775, 2021.
DOI: 10.1016/j.cej.2020.127775
Google Scholar
[8]
P. G. Salom, "The metallurgy of steel," J. Franklin Inst., vol. 120, no. 3, 2000.
DOI: 10.1016/0016-0032(85)90312-6
Google Scholar
[9]
R. P. Edavan and R. Kopinski, "Corrosion resistance of painted zinc alloy coated steels," Corros. Sci., vol. 51, no. 10, p.2429–2442, 2009.
DOI: 10.1016/j.corsci.2009.06.028
Google Scholar
[10]
S. M. A. Shibli, B. N. Meena, and R. Remya, "A review on recent approaches in the field of hot dip zinc galvanizing process," Surf. Coatings Technol., vol. 262, p.210–215, 2015.
DOI: 10.1016/j.surfcoat.2014.12.054
Google Scholar
[11]
N. Loukil and M. Feki, "Zn–Mn electrodeposition: a literature review," J. Electrochem. Soc., vol. 167, no. 2, p.22503, 2020.
DOI: 10.1149/1945-7111/ab6160
Google Scholar
[12]
K. K. Maniam and S. Paul, "Progress in electrodeposition of zinc and zinc nickel alloys using ionic liquids," Appl. Sci., vol. 10, no. 15, p.5321, 2020.
DOI: 10.3390/app10155321
Google Scholar
[13]
A. Lelevic and F. C. Walsh, "Electrodeposition of NiP alloy coatings: a review," Surf. Coatings Technol., vol. 369, p.198–220, 2019.
DOI: 10.1016/j.surfcoat.2019.03.055
Google Scholar
[14]
O. P. Abioye, A. J. Musa, C. A. Loto, O. S. I. Fayomi, and G. P. Gaiya, "Evaluation of corrosive behavior of zinc composite coating on mild steel for marine applications," in Journal of Physics: Conference Series, 2019, vol. 1378, no. 4, p.42051.
DOI: 10.1088/1742-6596/1378/4/042051
Google Scholar
[15]
A. Kumar and D. P. Sammaiah, "Influence of process parameters on mechanical and metallurgical properties of zinc coating on mild steel during mechanical process," Curr. Res. Top. poweer, Nucl. Fuel Energy, SP-CRTPNFE, no. 2016, 2017.
DOI: 10.1016/j.matpr.2017.11.640
Google Scholar
[16]
D. T. Oloruntoba, O. O. Oluwole, & E. O. Oguntade, (2009). Comparative study of corrosion behaviour of galvanized steel and coated Al 3103 roofing sheets in carbonate and chloride environments. Materials & Design, 30(4), 1371-1376.
DOI: 10.1016/j.matdes.2008.06.005
Google Scholar
[17]
S. G. Croll, "Surface roughness profile and its effect on coating adhesion and corrosion protection: A review," Prog. Org. Coatings, vol. 148, p.105847, 2020.
DOI: 10.1016/j.porgcoat.2020.105847
Google Scholar
[18]
V. Kumar and K. Balasubramanian, "Progress update on failure mechanisms of advanced thermal barrier coatings: A review," Prog. Org. Coatings, vol. 90, p.54–82, 2016.
DOI: 10.1016/j.porgcoat.2015.09.019
Google Scholar
[19]
I. G. Akande, O. S. I. Fayomi, and B. J. Akpan, "Development of UPP nanoparticles reinforced Zn–ZnO–MgO composite coating for corrosion-resistance, hardness, and microstructure property enhancement of AISI 1015 carbon steel for automotive and marine applications," Int. J. Adv. Manuf. Technol., vol. 123, no. 3–4, p.999–1008, 2022.
DOI: 10.1007/s00170-022-10222-2
Google Scholar
[20]
X. Wang, J. Pan, Q. Li, X. Dong, L. Shi, and S. Chang, "Preparation, Corrosion Resistance, and Electrochemical Properties of MnO2/TiO2 Coating on Porous Titanium," Coatings, vol. 12, no. 10, p.1381, 2022.
DOI: 10.3390/coatings12101381
Google Scholar
[21]
D. T. Ruppel, S. C. Dexter, and G. W. Luther, "Role of manganese dioxide in corrosion in the presence of natural biofilms," Corrosion, vol. 57, no. 10, 2001.
DOI: 10.5006/1.3290313
Google Scholar
[22]
A. Domenech-Carbo, M. A. P. Ronda, J. Vives-Ferrandiz, G. S. Duffo, S. Farina, and M. T. Domenech-Carbo, "Modeling 'dry'OCP measurements to characterize archaeological iron corrosion I: long-time transients," J. Electroanal. Chem., vol. 913, p.116210, 2022.
DOI: 10.1016/j.jelechem.2022.116210
Google Scholar
[23]
O. D. Akinfenwa, O. S. I. Fayomi, J. O. Atiba, and B. E. Anyaegbuna, "Chemical and microstructural investigation of starch modified zinc oxide paired as a composite superhydrophobic coating for mild steel protection," Chem. Pap., no. 0123456789, 2023.
DOI: 10.1007/s11696-023-03091-w
Google Scholar
[24]
K. Charoenkitamorn, P. T. Tue, K. Kawai, O. Chailapakul, and Y. Takamura, "Electrochemical immunoassay using open circuit potential detection labeled by platinum nanoparticles," Sensors, vol. 18, no. 2, p.444, 2018.
DOI: 10.3390/s18020444
Google Scholar
[25]
T. A. Hemkemeier, F. C. R. Almeida, A. Sales, and A. J. Klemm, "Corrosion monitoring by open circuit potential in steel reinforcements embedded in cementitious composites with industrial wastes," Case Stud. Constr. Mater., vol. 16, p. e01042, 2022.
DOI: 10.1016/j.cscm.2022.e01042
Google Scholar
[26]
B. Yazıcılar, F. Böke, A. Alaylı, H. Nadaroglu, S. Gedikli, and I. Bezirganoglu, "In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress," Plant Cell Rep., vol. 40, p.29–42, 2021.
DOI: 10.1007/s00299-020-02613-0
Google Scholar
[27]
M. Liu et al., "Effect of microstructure and crystallography on sulfide stress cracking in API-5CT-C110 casing steel," Mater. Sci. Eng. A, vol. 671, p.244–253, 2016.
DOI: 10.1016/j.msea.2016.06.034
Google Scholar
[28]
A. Datta, U. Ramamurty, S. Ranganathan, and U. V Waghmare, "Crystal structures of a Mg–Zn–Y alloy: A first-principles study," Comput. Mater. Sci., vol. 37, no. 1–2, p.69–73, 2006.
DOI: 10.1016/j.commatsci.2005.12.020
Google Scholar
[29]
M.K. Kolle, S. Shajahan, and A. Basu, "Effect of electrodeposition current and pulse parameter on surface mechanical and electrochemical behavior of Ni–W alloy coatings," Metall. Mater. Trans. A, vol. 51, p.3721–3731, 2020.
DOI: 10.1007/s11661-020-05787-0
Google Scholar
[30]
Y. Liu et al., "Structure–Performance evolution mechanism of the wear failure process of coated spherical plain bearings," Eng. Fail. Anal., vol. 135, p.106097, 2022.
DOI: 10.1016/j.engfailanal.2022.106097
Google Scholar