[1]
N. Duffie, J. Bendul, M. Knollmann, An analytical approach to improving due-date and lead-time dynamics in production systems, J. Manuf. Syst. 45 (2017) 273-285.
DOI: 10.1016/j.jmsy.2017.10.001
Google Scholar
[2]
X. Geng, J. Gao, Y. Huang, S. Wang, Y. Zhang, G. Wu, H. Zhao, H. Wu, X. Mao, A novel dual-heterogeneous-structure ultralight steel with high strength and large ductility, Acta Mater. 252 (2023) 118925.
DOI: 10.1016/j.actamat.2023.118925
Google Scholar
[3]
S. Liu, Z. Wu, H. Liu, H. Zhou, K. Deng, C. Wang, L. Liu, E. Li, Optimization of welding parameters on welding distortion and stress in S690 high-strength steel thin-plate structures, J. Mater. Res. Technol. 25 (2023) 382-397.
DOI: 10.1016/j.jmrt.2023.05.169
Google Scholar
[4]
B. Young, Experimental and numerical investigation of high strength stainless steel structures, J. Constr. Steel Res. 64 (2008) 1225-1230.
DOI: 10.1016/j.jcsr.2008.05.004
Google Scholar
[5]
K. Zhang, M. Yan, T. Huang, J. Zheng, Z. Li, 3D reconstruction of complex spatial weld seam for autonomous welding by laser structured light scanning, J. Manuf. Process. 39 (2019) 200-207.
DOI: 10.1016/j.jmapro.2019.02.010
Google Scholar
[6]
M. Kananen, K. Mäntyjärvi, M. Keskitalo, M. Hietala, A. Järvenpää, K. Holappa, K. Saine, J. Teiskonen, Laser Welded Corrugated Steel Panels in Industrial Applications, Phys. Procedia 78 (2015) 202-209.
DOI: 10.1016/j.phpro.2015.11.044
Google Scholar
[7]
M. Kang, I.H. Jeon, H.N. Han, C. Kim, Tensile–Shear Fracture Behavior Prediction of High-Strength Steel Laser Overlap Welds, Metals 8 (2018) 365.
DOI: 10.3390/met8050365
Google Scholar
[8]
F. Yan, C. Hu, X. Zhang, Y. Cai, C. Wang, J. Wang, X. Hu, Influence of heat input on HAZ liquation cracking in laser welded GH909 alloy, Opt. Laser Technol. 92 (2017) 44-51.
DOI: 10.1016/j.optlastec.2017.01.016
Google Scholar
[9]
Y. Shi, S. Wang, P. Zhang, Research on properties of ductile iron/mild steel joints welded by laser, Opt. Laser Technol. 164 (2023) 109477.
DOI: 10.1016/j.optlastec.2023.109477
Google Scholar
[10]
B. Xue, B. Chang, D. Du, Monitoring of high-speed laser welding process based on vapor plume, Opt. Laser Technol. 147 (2022) 107649.
DOI: 10.1016/j.optlastec.2021.107649
Google Scholar
[11]
Y. Ai, P. Jiang, C. Wang, G. Mi, S. Geng, W. Liu, C. Han, Investigation of the humping formation in the high power and high speed laser welding, Opt. Lasers Eng. 107 (2018) 102-111.
DOI: 10.1016/j.optlaseng.2018.03.010
Google Scholar
[12]
R. Goyal, M. El-zein, Influence of laser weld shape on mechanical and fatigue behaviour of single lap laser welded joints, J. Adv. Join. Process. 1 (2020) 100018.
DOI: 10.1016/j.jajp.2020.100018
Google Scholar
[13]
P. Golewski, T. Sadowski, The influence of dual adhesive in single lap joints on strength and energy absorption, Mater. Today Proc. 45 (2021) 4280-4285.
DOI: 10.1016/j.matpr.2020.12.545
Google Scholar
[14]
S.M. Fufa, N. Labonnote, S. Frank, P. Rüther, B.P. Jelle, Durability evaluation of adhesive tapes for building applications, Constr. Build. Mater. 161 (2018) 528-538.
DOI: 10.1016/j.conbuildmat.2017.11.056
Google Scholar
[15]
M. Hietala, M. Keskitalo, A. Järvenpää, Influence of Air Gap Size to Mechanical Properties of Laser Welded Lap Joints, Mater. Sci. Forum 1053 (2022) 232-237.
DOI: 10.4028/p-5v6uy0
Google Scholar
[16]
P. Drobniak, A. Otto, R.G. Vázquez, R.M. Arias, J.L. Arias, Simulation of keyhole laser welding ofstainless steel plates with a gap, Proc. CIRP 94 (2020) 731-736.
DOI: 10.1016/j.procir.2020.09.134
Google Scholar
[17]
L. Mei, G. Chen, D. Yan, D. Xie, X. Ge, M. Zhang, Impact of inter-sheet gaps on laser overlap welding performance for galvanised steel, J. Mater. Process Technol. 226 (2015) 157-168.
DOI: 10.1016/j.jmatprotec.2015.07.020
Google Scholar
[18]
M. Idriss, F. Mirakhorli, A. Desrochers, A. Maslouhi, Fatigue behaviour of AA5052-H36 laser-welded overlap joints: Effect of stitch-weld orientation and gap bridging, Int. J. Fatigue 167 (2023) 107358.
DOI: 10.1016/j.ijfatigue.2022.107358
Google Scholar
[19]
L. Chen, P. Nie, Z. Qu, O.A. Ojo, L. Xia, Z. Li, Jian Huang, Influence of heat input on the changes in the microstructure and fracture behavior of laser welded 800MPa grade high-strength low-alloy steel, J. Manuf. Process. 50 (2020) 132-141.
DOI: 10.1016/j.jmapro.2019.12.007
Google Scholar
[20]
K. Asim, K. Sripichai, J. Pan, Fatigue behavior of laser welds in lap-shear specimens of high strength low alloy steel sheets, Int. J. Fatigue 61 (2014) 283-296.
DOI: 10.1016/j.ijfatigue.2013.10.019
Google Scholar